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INTRODUCTION

Achieving food security is one of the millennium 
development goals (S t a l k e r , 2008). As an archi-
pelago, the Republic of Indonesia, with more than 
75% of its territory covered by the ocean, faces a 
significant challenge in promoting the food security 
program (R o z a , 2017). For most people of Indonesia 
rice is their primary food source. Paddy rice is becom-
ing an essential food source here. By establishing a 
large number of paddy fields by farmers, this sector 
has become more interesting than others, e.g. fisher-
ies or plantation. This caused the farmers have been 

responsible for ensuring a high yield of paddy rice 
over time. 

The agriculture support program in Indonesia has 
been completed in a decade. This program is expected 
to ensure the highest productivity in rice yield and 
obtaining food security. Farmers were made respon-
sible for the production intensification, diversification, 
mechanization and post-harvest procedures important 
for the yield and crops quality increase. The applica-
tion of remote sensing technology can also contribute 
to this program. Some research in paddy rice field 
has already been done resulting in many suggestions 
and findings. Fundamental are the problems of soil 

 
Integration of Spectral Measurement and 
UAV for Paddy Leaves Chlorophyll Content 
Estimation

M. F. Ghazali1,2,3, K. Wikantika2,3,5, I N. P. Aryantha4, R. R. Maulani4, L. F. Yayusman2,5, 
D. I. Sumantri2

1Lampung University, Faculty of Engineering, Department of Geodesy and Geomatics 
Engineering, Bandar Lampung, Indonesia 
2Bandung Institute of Technology, Center for Remote Sensing, Bandung, Indonesia  
3ForMIND Institute, Bandung, Indonesia 
4Bandung Institute of Technology, School of Life Science and Technology, Bandung, 
Indonesia 
5Bandung Institute of Technology, Faculty of Earth Sciences and Technology, Remote 
Sensing and GIS Research Group, Bandung, Indonesia

In the agriculture sector, proper crop management can enhance yield production. Determination of the chlorophyll content in 
crop contributes to this significant topic. In this study, the leaves chlorophyll content of local paddy cultivars Inpari 32 and 
Inpari 33 was estimated and the difference at various days after planting (DAP) was determined. The procedure involved the 
combination of spectral reflectance data, aerial photographs taken by unmanned aerial vehicle (UAV), and chlorophyll labora-
tory analysis data. The chlorophyll content in the cultivars leaves was estimated using the models MCARIspectroradiometer and 
UAV chlorophyll regression (UCR). The results showed a variation in the chlorophyll content not only between the two culti-
vars on various DAP, but randomly also in the same cultivar of the same DAP. The MCARIspectroradiometer model indicated 
a lower chlorophyll content for Inpari 32 than for Inpari 33 while the UCR model gave opposite results. The chlorophyll con-
tent raises with increasing DAP, but it gradually decreases through the grain filling period until harvest.

leaves spectra, spectral indices, aerial photo, paddy cultivars, Inpari 32, Inpari 33



Scientia agriculturae bohemica, 51, 2020 (3): 86–97	 87

moisture estimation and evaluation (A r i f  et al., 
2012), variation and changes in soil pH (M a h l e r , 
M c D o l e , 1987; G u o  et al., 2011; G h a z a l i  et al., 
2017, 2019), yield estimation (N u a r s a  et al., 2011; 
S o n  et al., 2016), and of the relationship between 
nitrogen content and crop yield estimated based on 
satellite data (M o s l e h  et al., 2015; S a b e r i o o n , 
G h o l i z a d e h , 2016). The chlorophyll content is 
essential for proper plant growth. Its values have been 
studied in several crop types to estimate crop yield 
(S c h l e m m e r  et al., 2013).

Paddy rice is a plant species from the family 
Gramineae named Oryza sativa. It is a seasonal plant 
that can be cultivated three to four times a year; its 
distribution range is from lowlands near the coastline 
to 1000 m a.s.l. According to Yo s h i d a  (1981), paddy 
rice grows in specific regions and its growth quality 
is affected by climatic factors like temperature, solar 
radiation, rainfall and groundwater that differ from 
place to place.

The physiological process involved in grain produc-
tion is affected both directly by, and indirectly through 
plant diseases and insects. Some research has indicated 
that the variation in temperature affects rice growth 
(Yu l i a w a n ,  H a n d o k o , 2016). Temperature rise 
events accelerate rice growth and possibly decrease 
the yield; this applies to both the irrigated and rainfed 
paddy rice. Other studies conducted by W a n g  et al. 
(2019) found that the temperature rise breaks paddy 
rice in the flowering stage so it loses the capability 
of producing a rare flower which leads to the failure 
in yields. 

Others studies have also described the combined 
effect caused by temperature and drought. According 
to L a w a s  et al. (2018), this situation results in vari-
ous physiological processes. Each paddy rice culti-
var responses in a different way, involves the stress 
during flowering, grain filling, increased in panicle 
tissue temperature and followed by yield reduction. 
Specifically, the brown rice cultivars decrease the 
yield when exposed to mean temperature exceeding 
28°C (O h - e  et al., 2015).

Understanding the yield production in paddy rice 
through the biochemical characteristics such as the leaf 
chlorophyll content is exciting. At the leaves level, the 
chlorophyll content is a critical variable in the photo-
synthesis process (K o o i s t r a ,  C l e v e r s , 2016). 
The chlorophyll content in paddy leaves is measurable 
by spectral reflectance using a spectroradiometer that 
provides both the absorbance and reflectance data on invis-
ible material in an object (water, starch, leaves pigment, 
plant diseases, nitrogen and chlorophyll content, etc.). 

The leaves spectral reflectance data can be collected 
during a field measurement. For example, in the study 
by K o o i s t r a ,  C l e v e r s  (2016), some vegetation 
indices (transformed chlorophyll in reflectance index 
(TCARI), ratio between the triangular chlorophyll in-
dex (TCI)) were derived from the spectral reflectance 

wavelength (H a b o u d a n e  et al., 2002). Besides, 
at a leaves level, at an area level, a remote sensing 
index called normalised area vegetation index (NAVI) 
is also useful in estimating the chlorophyll content 
(C a r m o n a  et al., 2017).

To determine the chlorophyll index, B a n n a r i 
et al. (2008) used the normalised difference pigment 
index (NDPI). L i a n g  et al. (2016) used the hybrid 
inversion models (least squares-support vector re-
gression (LS-SVR), random forest regression (RFR), 
canopy chlorophyll index (CCI), and photochemical 
reflectance index (PRI)). 

Other studies utilised the optical images of Landsat 
8 to derive the green chlorophyll index (CIgreen) and 
the greenness index (G). These indexes were used to 
estimate the chlorophyll content in a grassland area 
(Y i n g  et al., 2016). G h o l i z a d e h  et al. (2017) stated 
that the chlorophyll content positively correlated with 
the increase in the nitrogen content in paddy leaves. 

The chlorophyll content assessment in vegetation 
leaves based on remote sensing data has become the 
primary investigation method. In general, the hyper-
spectral data might be leading in these topics. Besides 
that, the integration images of RapidEye, Sentinel-2 and 
EnMAP2 are useful for the leaves chlorophyll content 
estimating (C u i  et al., 2018). The mentioned studies 
highlighted the significance of optical satellite imagery 
in supporting a sustainable production of crops through 
estimating their chlorophyll contents. The chlorophyll 
content estimation might be the focus for studying 
both physical and chemical characteristic of the paddy 
rice plant. Other studies used the parameters like the 
above-ground canopy (H i r o o k a  et al., 2017), leaves 
area index (LAI) and nitrogen content (S a b e r i o o n , 
G h o l i z a d e h , 2016) also essential for the paddy rice 
plant growth quality estimation. These perspectives 
are critical since the chlorophyll content is affected 
by the nitrogen intake (Y a n g  et al., 2017), water 
content both in leaves and soil (C h u t i a ,  B o r a h , 
2012), variation of annual rainfall and temperature 
(O h - e  et al., 2015; L a w a s  et al., 2018), which are 
often considered as the yield estimation parameters.

Recently, the unmanned aerial vehicle (UAV) has 
been used as the cheapest platform in obtaining and 
collecting aerial photographs. This new method has 
become essential in supporting the agriculture initiative 
(R o k h m a n a , 2015; M u c h i r i ,  K i m a t h i , 2016; 
D u ,  N o g u c h i , 2017). The UAV aerial photography 
was applied to monitor the paddy rice productivity 
(J e o n g  et al., 2018). The method offers the capability 
of spectral reflectance in assessing plant biochemical 
characteristics. In the present study, the method was 
used for the chlorophyll detection in paddy leaves. The 
procedure involved the integration of both spectral 
signature and UAV aerial photos. The variation in the 
plant chlorophyll content was determined based on its 
distribution in the paddy field, local paddy cultivars 
Inpari and the days after planting (DAP) difference.
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MATERIAL AND METHODS

Study site

This study was conducted in Bukateja village, 
Majasari sub-district, Purbalingga residence, in the 
Central Java Province (Fig. 1). The paddy field is 
situated 500 m a.s.l. and is distributed in a hilly region 
with terraces. Here, two varieties of paddy cultivars 
(Inpari 32 and Inpari 33) were planted and examined 
for the chlorophyll content at two different DAP – days 
65 and 110. At that time, some parts of the paddy field 
had already been harvested. The 1 ha study area was 
monitored by UAV. The climatic condition of this area 
is classified as Af in the Koppen Climate Classification 
(Peel et al., 2007), with annual rainfall and average 
temperature of 3214 mm and 26.4°C, respectively.

UAV aerial images

The aerial images were collected using an UAV 
type DJI Phantom 4 advanced produced by Shenzhen 
Dajiang Baiwang Technology Co., Ltd. It is equipped 

with a 20-megapixel camera that allows capturing the 
visible light only. Each images taken by the UAV has 
set up the ground sampling distance (GSD) size of  
4 cm from a height of 150 m a.s.l. The UAV took as 
much as 30 single photos. The collected aerial photos 
were processed into an orthophoto with true colour 
in the standard RGB colour space. The details of the 
camera sensor attached to the UAV DJI Phantom 4 
are presented in Table 1.

Empirical estimation of paddy leaves chlorophyll content

The chlorophyll content in leaves of two paddy 
rice cultivars (Inpari 32 and Inpari 33) was ana-
lysed in the laboratory of the School of Life Science 
and Technology, Bandung Institute of Technology, 
Indonesia. The chlorophyll content determination fol-
lowed the standard used by Yo s h i d a  et al. (1976). 
This procedure revealed that the chlorophyll contents 
in Inpari 33 and Inpari 32 differ. As much as 11.85, 
12.85 and 10.27 mg l–1 chlorophyll was obtained from 
Inpari 33 (110 and 65 DAP), and Inpari 32 (65 DAP), 
respectively. These values were found in a single 

Fig. 1.  Study location for chloro-
phyl l  es t imat ion and dis t r ibut ion 
based on aerial  photography from 
unmanned aerial vehicle in Bukateja, 
Purbal ingga residence,  Indonesia 
paddy plant locate on the upper right 
corner is at 110 days after planting 
(DAP), in the down left to the right is 
at 62 DAP, and the black spots = sam-
pling plots for data field acquisition.  
source: own research.

Table 1. Specification of the camera attached to DJI Phantom 4 advanced

Camera specifications

Sensor 1‘‘ CMOS Effective & Pixels: 20 MP 

Lens FOV: 84° 35 mm, equivalent to 24 mm, aperture: f/2.8-11

ISO range Auto: 100–3200 and 100–12 800 for manual mode.

Shutter speed 8–1/8000 s

Ratio image size 3: 2: 5472 × 3648

Still photography modes Auto Exposure Bracketing (AEB): 3/5 bracketed

Photo format JPEG/DNG (RAW)

Bands sRGB
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paddy leaf, while two sheets of paddy leaves from 
each cultivar were used.

On the paddy field, four clumps of paddy plants 
are cultivated per 1 m2. Each has 20 to 30 paddy 
leaves. It is thus possible to calculate the total chloro-
phyll content per 1 m2 for the two cultivars: Inpari 33  
(110 and 65 DAP), and Inpari 32 (65 DAP) can pro-
duce approximately 1.422, 1.542, and 1.232 mg l–1 
chlorophyll per 1 m2, respectively. 

Paddy leaves spectral reflectance

Data on the paddy leaves spectral reflectance were 
obtained during a field measurement using a portable 
spectroradiometer. A multispectral radiometer MSR16R 
(Cropscan Inc., Minnesota-USA) was chosen as it is 
simple to use and it offers reflectance values similar 
to those provided by Landsat 7. It allows capturing an 
object reflectance in a wavelength range from 520 to 
1700 nm. The MSR16R has 16 spectral bands classi-
fied into four band groups (green, red, near-infrared 
and shortwave near-infrared). 

The spectral reflectance was measured using a 
canopy level as the measurement unit. The MSR16R 
can capture the maximal area of 6.5 m2, the distance 
from the radiometer sensor to the canopy is 2 m in 
height (Fig. 2). The reflectance measurement took 
place in the same area the laboratorily analysed paddy 
leaves were taken from. Ten spectral reflectance mea-
surements were carried out for two cultivars, at three 
different rice phenological development stages based 
on day after planting (DAP). The leaves reflectance 
values were distributed in 16 single bands (Table 2), 
and were expressed as the spectral signature of paddy 
rice leaves at the canopy level (Fig. 3). 

The reflectance values measured the actual condition 
of the paddy plants. Results of ten spectral reflectance 
measurements for two cultivars were recorded: four for 
Inpari 32 and six for Inpari 33 (Table 2). In the green 
and red region from 520 to 561 nm, the reflectance 
values for healthy vegetation are lower. According to 
these values, both Inpari 32 and 33 were in healthy 
condition. At the near-infrared region, the reflectance 
values must be 3–4× higher than the values in the 
green and red region. But, in some cases a 3× lower 
value indicates an unhealthy vegetation. After this, all 
the reflectance values decrease gradually in the short 
wave infrared region. 

Based on the combination of these reflectance values 
(from the green to the short-wave infrared region) we 

Table 2. Spectral reflectance of three stages of paddy plant growth (phenology stages) (day 62 after planting, ready to harvest, and harvested). 
Results were obtained using a spectroradiometer in a range of 520 to 1700 nm. These range are also similar to green, red, near-infrared and 
shortwave infrared in Landsat 7 satellite images

No.
Wavelength (nm)

Paddy cultivars
520 560 561 600 601 660 661 662 690 760 810 855 1600 1650 1700

1 6.35 7.92 6.61 4.78 4.90 6.71 3.46 4.09 9.43 46.33 44.38 53.84 20.00 15.56 21.62 Inpari 32

2 7.42 9.34 7.71 5.42 5.52 7.51 3.88 4.58 11.17 53.25 50.54 60.77 23.15 18.32 22.88 Inpari 32

3 6.87 8.65 7.18 5.13 5.20 7.05 3.63 4.25 10.35 54.57 52.50 63.22 24.95 18.07 14.76 Inpari 32

4 7.01 8.76 7.36 5.28 5.43 7.47 3.88 4.59 10.56 46.33 44.03 53.34 20.67 16.22 19.15 Inpari 32

5 7.41 9.29 7.86 5.81 5.97 8.42 4.36 5.16 11.39 48.22 46.26 56.07 22.31 17.06 17.39 Inpari 33

6 6.74 8.54 7.21 5.28 5.54 7.98 4.15 4.93 10.81 38.00 36.23 44.76 21.76 17.98 18.89 Inpari 33

7 7.35 9.25 7.73 5.60 5.79 8.02 4.14 4.91 11.28 48.59 46.64 56.90 23.18 17.82 17.56 Inpari 33

8 7.37 9.23 7.73 5.58 5.70 7.79 4.03 4.79 11.28 50.09 47.88 57.93 23.13 17.42 15.81 Inpari 33

9 7.23 8.37 7.96 8.10 9.45 16.61 8.91 10.55 12.84 18.97 18.31 23.33 25.88 25.88 10.98
Inpari 33/ 
harvested

10 7.50 9.36 8.32 7.14 7.82 12.11 6.43 7.72 13.87 35.06 33.49 41.53 22.25 19.34 11.68
Inpari 33/ 

ready to harvest

Fig. 2. Acquisition of spectral reflectance data in a paddy field at Bu-
kateja village, Indonesia using a multispectral radiometer (MSR16R) 
left to right: sampling site, system spectroradiometer MSR16R, data 
logger controller (DLC), nivo, CT100 controller and head radiometer 
source: own research
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drew the spectral curves. A typically shaped spectral 
curve obtained from the vegetation is depicted in Fig. 3. 
Although all the spectral curves show a similar pattern, 
a variation is observable in each single sample. For 
instance, it occurs not only in the context of healthy 
and unhealthy vegetation, but also with respect to the 
day after planting (DAP).

The spectral curves have an essential role in ex-
plaining the vegetation characteristics, including the 
biophysical aspect such as the plant structure (erect-
ophile and planophile), plant composition (nitrogen, 
lignin, chlorophyll a and b), and quantitative char-
acteristics (biomass per unit area, LAI, and plant 
height) (T h e n k a b a i l  et al., 2002, 2012; P a p e s  et 
al., 2010). Furthermore, the chemical characteristics 
can be determined at 300–900 nm for carotenoids, 
xanthophylls, and chlorophyll contents. Water content 
is determinable at 1000, 1200, 1500, 1900 and 2500 
nm, while sugar, starch protein, and cellulose lignin at 
the spectral range 1700–2500 nm (N u m a t a , 2012). 
These parameters, influencing plant health status 
during the growing season, were also examined in 
the paddy plants. 

Spectral curves of the paddy plants at 62 DAP 
show a typical pattern that is lower at 520–690 nm, 
suddenly higher at 760–855 nm and finally decreasing 
in reflectance value at 1600–1700 nm due to water 
absorbance. This holds for samples No. 1–9 (Fig. 3a, b),  
an exception is sample No. 10 (Fig. 3c). 

In general, both Inpari 32 and 33 plants were di-
vided into two groups – healthy and fairly healthy. 
The paddy plants in samples No. 1–3, 5 and 7–8 were 
healthier than those in samples No. 4, 6 and 9 of the 
same DAP. For Inpari 32 (Fig. 3a), spectral curves 
No. 2 and 3 are for healthier plants than No. 1 and 4,  
showing the lowest reflectance values in the near-
infrared region. In Inpari 33, the situation is similar 
(Fig. 3b). A difference is noticeable when observing 
the shape of the spectral pattern of harvested paddy 
rice and of that ready to be harvested (Fig. 3c). In the 
harvested paddy rice, the reflectance values in the 
near-infrared region tend to be lower than in the un-

harvested. Like in samples No. 4 and 6, these spectral 
have lower reflectance values, especially in wavelength  
760–855 nm.. This situation is similar with sample 
No. 9, when it compares with sample No. 10 as ready 
to harvest of paddy. However, in wavelength 660 nm, 
the reflectance value is 5% higher. 

With increasing DAP, the paddy rice leaves colour 
turned from green to golden brown, following the chlo-
rophyll reduction. The plant used the energy obtained 
from photosynthesis dominantly for creating both rice 
flower and rice grain. This situation is the reason for 
decreasing the reflectance values at 62 and 110 DAP. In 
this case, the reduction of chlorophyll content does not 
indicate a plant disease, but is characteristic for paddy 
grains filling. But there might exist a difference in the 
condition between sample No. 4 and sample No. 6.  
Sample No. 9 has a different shape if compared with 
the other samples. During the harvest, farmers cut the 
rice straw. It means that the process of photosynthesis 
suddenly stops. This situation is reflected in a decrease 
in the near-infrared region. 

Integrating paddy leaves spectral reflectance with UAV 
aerial images digital number

Both spectral reflectances obtained from spectrora-
diometer and aerial photos of UAV are different. The 
difference is in the data format, which is in the form 
of images and numbers. The pixel values stored as a 
digital number in aerial photos of UAV are express 
as a grey level that range between 0-255, while the 
reflectance values show in percent (%). 

This study required these two data to develop a 
model for chlorophyll estimation. But in fact, the 
difference exists since the paddy leaves spectral has 
the reflectance values range between 0 -100%, which 
is divided into 16 bands and classified to green, red, 
near-infrared, and short-wave infrared. When it com-
pared to an aerial photograph of a UAV that only has 
three portions of bands, includes red, green, and blue, 
there are only two bands that similar these are red and 
green bands.  To accommodate this similarity, both 

Fig. 3. The spectral reflectance comparison for Inpari 32 (left) and Inpari 33 cultivars at 62 days after planting (center) and comparison be-
tween harvested paddy plants and those ready for harvest (right)  
source: own research
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data need to combine through finding the relationship 
between reflectance values to the digital number of 
aerial photographs and converting the digital number 
(DN) into reflectance values. The value conversion 
is needed to equalize the range of digital values for 
aerial photographs to the value of the spectral reflec-
tance of paddy leaves. In advance, the study used the 
spectral reflectance as reference data for doing image 
classification using Linear Spectral Unmixing (LSU) 
(Gandharum et al., 2015). 

Corrected satellite images also own the spectral 
reflectance at the stage of surface reflectance or bottom 
of atmosphere (BoA)  (Lin et al., 2015). It was applied 
to satellite images (such as Landsat 8). All the pixels 
are influenced by scattering in the atmosphere layer, 
causing an error in the digital numbers and necessary 
to apply a correction procedure named the atmospheric 
and radiometric correction (U . S .  G e o l o g i c a l 
S u r v e y , 2016). In an aerial photograph, which is 
made by UAVs in the lower atmospheric layer below 
1 km above the Earth’s surface. The atmospherical 
effect received by aerial photos is lower than the 
satellite images. 

The equation formula (Eq.1) was developed based on 
the relationship of reflectance values and DN of UAV 
and shown in scatterplots (Fig. 4). This relationship is 
expressed by a model used for converting the UAV’s 
DN into the surface reflectance in %. This equation is 
a rescale method that transforms the lowest raw UAVs 
to 0 and the highest to 100%. These two linear regres-
sions between those values indicate the relationship 
between the field measurement (paddy field) and the 
DN of UAVs. The scatterplot said that both data are 
linear, with a moderate negative correlation. In other 
words, a change in the reflectance value will change 
the DN values. Where the decrease in the reflectance 
value of paddy leaves will cause an increase in the 
digital value of the band in aerial photographs. The 
converted values of aerial photographs show in Table 3.

In general, the values range from 0 to 100%. The 
green bands have lower values than the red ones, while 
the blue bands have the lowest values.

Reflectance (%) = [(DN – 0) / (225 – 0)] × 100        Eq.(1)

Paddy leaves chlorophyll content estimation

This study used two different models to estimate 
the paddy leaves chlorophyll content. The first one 
aimed to evaluate the chlorophyll content in the sin-
gle clump of paddy leaves, while the second model 
proposed to determine the chlorophyll content in the 
paddy field. The model proposed by D a u g h t r y  et 
al. (2000) known as the modified chlorophyll absorp-
tion ratio index (MCARI) was used to estimate the 
chlorophyll content in single paddy leaves. This model 
utilised the spectral reflectance from hyperspectral 
bands at 550, 670 and 700 nm (Eq. 2). These spectral 

bands are different in specific wavelength from those 
of MSR16R but are still located in the same region. 
According to S h e f f i e l d  (2009), in L i a n g  (2004) 
both equations utilised the bands in the visible light 
region, including 550–760 nm, and were considered 
as the chlorophyll absorption bands. This approach 
is the real reason why the spectral reflectance value 
in leaves is lower in that range. The chlorophyll cell 
absorbs much green and red reflectance.

However, it is required to match the original bands 
(MCARI) with those of the MSR16R. In the modi-
fication series of MCARI, they are designated as  
MCARIspectroradiometer (Eq. 3). This model replaces the 
spectral band at 550 nm by 560 nm, at 670 nm by 660 nm,  
and at 700 nm by 760 nm. The chlorophyll content at 
the paddy field level was estimated using the model 
UAV chlorophyll regression (UCR). This model was 
derived from a multiple linear regression between the 
expected chlorophyll content obtained from MCARI 
spectroradiometer (Eq. 3) with the corrected digital 
numbers of UAV (Table 3). This model (Eq. 4) used 
the RGB image from the UAV orthophoto.
MCARI = (700 – 670) – 0.2 × (700 – 550) × (700/670) 
					           Eq.(2)
MCARIspectroradiometer = (760 – 660) – 0.2 × (690 – 560) 
× (760/660)				           Eq. (3)

UCR = 1.954 – 0.963 × Red + 1.589 × Green – 0.217 × Blue 
					           Eq. (4)

RESULTS

The chlorophyll content estimation based on the 
MCARIspectroradiometer (Eq. 3) gave specific chlorophyll 
content values in the paddy plant at the canopy level. 
On an area of 6.5 m2, it generally showed a 2–3× 
higher amount of chlorophyll than was the actual 
content measured in a laboratory. Inpari 33 (110 DAP) 
displayed a lower chlorophyll content, the laboratory 

Fig. 4. Relationship between paddy plant reflectance and unmanned 
aerial vehicle’s digital numbers described in a linear regression; 
Green - left, Red - right;  
source: own research
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and MCARIspectroradiometer values (Eq. 3) were 10.27 
mg l–1 and 23.24 ml per 6.5 m2, respectively. Inpari 33 
seedlings of 62 DAP were younger than those of 110 
DAP, therefore the chlorophyll content of Inpari 33 
at 62 DAP was higher than at 110 DAP (12.85 mg l–1 
and 44.43 ml per 6.5 m2, respectively). Moreover, the 
difference in DAP was influenced by the characteristics 
of the plant leaves biochemical content.. Even in the 
case of the same paddy plant cultivar, the variation 
in DAP plays a major role in the current chlorophyll 
content value. 

Within this study we were not able to compare 
Inpari 32 in different stages of phenology, in the paddy 
fields only Inpari 33 occurs in two different stages of 
DAP. This situation enabled us only a general compari-
son in the chlorophyll content of the cultivars. These 
varieties showed 11.85 mg l–1 and 38.83 ml per 6.5 
m2 for laboratory and MCARIspectroradiometer (Eq. 3) 
measurements, respectively. At this point, the earlier 
conclusion is that Inpari 33 is better than Inpari 32 
in producing the chlorophyll. For details see Table 4.  
Like the estimation result of MCARIspectroradiometer  
(Eq. 3) given above, the spatial distribution of estimated 
chlorophyll over the whole study area is also following 
the variation in the days of planting, including paddy 

rice at 62 and 110 days after planting (DAP), and a 
harvested field with a burned spot (Fig. 5).

In the area of 62 DAP, the chlorophyll content 
was estimated in the range from 34.19 to 45.78 ml 
per 6.5 m2. This value is higher than for the paddy in 
the field of 110 DAP. At this place, the chlorophyll 
was estimated in the range from 21.2 to 38.6 ml per 
6.5 m2. The anomaly has existed in the harvested 
area, and the chlorophyll content was determined 
in a range of 15.6 to 42.4 ml per 6.5 m2. The model 
used for predicting the chlorophyll content showed 
a negative trend of the chlorophyll content change 
during planting. It was successful in proving that the 
DAP increase is followed by a drop in the chlorophyll 
content. Outside these phenomena, the burned paddy 
straw showed the highest chlorophyll content. In other 
plants, e.g. in grasses, a lower chlorophyll content 
was detected if compared with the paddy at 62 DAP, 
but a higher one at 110 DAP (34.19 and 21.2 ml per 
6.5 m2, respectively).

In the area of 62 DAP, there were two paddy rice 
cultivars planted. For Inpari 32, the distribution of 
samples used at this location is following this setup: 
the first three samples (No. 1–3) are located in the 
northern part of the area, while sample No. 4 is located 

Table 3. Relationship between the paddy leaves reflectance, the digital number of aerial photos and the converted UAV reflectance (in nm)

.No
Spectroradiometer DN–UAV Reflectance–UAV (%)

green average red average red green blue red green blue

1 6.96 5.56 219 210 128 85.88 82.35 50.2

2 8.16 6.35 206 194 126 80.78 76.08 49.41

3 7.57 5.94 202 204 111 79.22 80 43.53

4 7.71 6.2 184 183 98 72.16 71.76 38.43

5 8.19 6.85 184 188 97 72.16 73.73 38.04

6 7.5 6.45 191 195 109 74.9 76.47 42.75

7 8.11 6.62 167 177 104 65.49 69.41 40.78

8 8.11 6.53 188 171 108 73.73 67.06 42.35

9 7.85 11.08 205 162 130 80.39 63.53 50.98

10 8.39 9.18 217 186 122 85.1 72.94 47.84

UAV = unmanned aerial vehicle, DN = digital number

Table 4. Comparison between laboratory determined and estimated chlorophyll content and its spectral reflectance for Inpari 32 and Inpari 33 cultivars

Cultivars/DAP
Spectroradiometer (nm) Chlorophyll content

560 662 690 760 Lab (mg l–1) MCARIspectro (ml per 6.5 m2)

Inpari 33/110 9.36 7.72 13.87 35.06 10.27 23.24

Inpari 33/65 9.34 4.58 11.17 53.25 12.85 44.43

Inpari 32/65 5.81 2.65 6.7 42.8 11.85 38.83

 DAP = days after planting, Lab = laboratory result, MCARIspectro = spectroradiometer 
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in the south. Inpari 33 is represented by samples No. 
5–8 situated in the middle part of the paddy field 
between samples No. 1–3 and 4. Sample No. 9 is 
located upper right near sample No. 10 which is in 
the south (Fig. 5).

The paddy cultivar Inpari 32 planted in these lo-
cations has a higher chlorophyll content compared to 
Inpari 33. This condition is based on the results given 
by UCR (Eq. 4) (Table 5). The chlorophyll content 
for this cultivar ranges from 38.12 to 45.93 ml per 
6.5 m2. For the paddy cultivar Inpari 33, the range of 
values for 62 DAP, 110 DAP and the harvested area is 
29.56–41.03 ml per 6.5 m2, 23.24 ml per 6.5 m2 and 
6.81 ml per 6.5 m2, respectively. Near the location of 
samples No. 5–8, the lowest chlorophyll content was 
detected (29.56 ml per 6.5 m2). In the paddy field, 
the lowest chlorophyll content corresponds with this 
paddy plant that planted in the same location (Fig. 6). 

DISCUSSION

The estimation of chlorophyll content based on the 
integration model covering both spectral reflectance 
and UAV aerial imagery gave a view of the variation in 
the chlorophyll content in paddy leaves. Theoretically, 
the variation in the paddy leaves chlorophyll contents 
may be influenced by water as reported by C h u t i a , 
B o r a h  (2012). In this case, deficiency in the plant 
water intake is contributing to a significant decrease 
in the total chlorophyll content. In vineyards, the situ-
ation is opposite. The water status has no relationship 
with the chlorophyll content (H a i l e m i c h a e l  et 
al., 2016). 

As the paddy plants are easily observable through 
their phenology, a possible factor influencing the 
chlorophyll content is the day of the year (DOY). 
I s h i k a w a  et al. (2015) observed that three differ-
ent growing stages of paddy rice (tillering, heading, 
and mature grain stage) correspond with the change 
in the chlorophyll absorption spectrum in blue and 
red bands. Z h a n g  et al. (2014) extended the spectral 
band of 640 nm to 680 nm. This is in line with the 
estimation result obtained from MCARIspectroradiometer 
(Eq. 3), although a new band in the near-infrared at 
760 nm was added.

The growing stages correspond with the changes in 
paddy rice phenology. This study has dealt with the vari-

Table 5. Overview of the chlorophyll contents estimation in 10 samples 
of paddy rice plant

No. Paddy cultivars
Stages of 

 phenology
Estimated chlorophyll  

(ml per 6.5 m2)

1 Inpari 32 62 DAP 38.83

2 Inpari 32 62 DAP 44.43

3 Inpari 32 62 DAP 45.95

4 Inpari 32 62 DAP 38.12

5 Inpari 33 62 DAP 39.14

6 Inpari 33 62 DAP 29.56

7 Inpari 33 62 DAP 39.65

8 Inpari 33 62 DAP 41.03

9 Inpari 33 harvested 6.81

10 Inpari 33 110 DAP 23.24

DAP = days after planting

Fig. 5. Spatial distribution of 
estimated chlorophyll content 
in three different types of paddy 
field (left image). Chlorophyll 
content in paddy plant at harvest 
period (top image), post-harvest 
(mid image) and 62 days after 
planting (bottom image) 
source: own research
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ation of DAP, instead of using the DOY (I s h i k a w a 
et al., 2015). The result given by MCARIspectroradiometer 
(Eq. 3) has explained more explicitly related to this 
variation. The cultivars Inpari 33 at 62 DAP and  
110 DAP has grown in two different stages (maturity and 
grain filling) and show different chlorophyll contents. 
Changes in the chlorophyll contents occur dynamically 
during all paddy rice growing stages. Young plants of 
paddy rice begin at lower levels of chlorophyll, then 
its content increases as the plants develop, and finally 
decreases with their ageing (Ya n g ,  L e e , 2001).

The chlorophyll absorption bands range from the 
blue to the green region was previously described 
implicitly by T h e n k a b a i l  et al. (2002), G i t e l s o n 
(2011) and N u m a t a  (2012). The studies said that 
these spectral bands are capable of detecting and 
estimating the chlorophyll content in plant leaves. It 
likely supports the decision to change the configuration 
of bands used in MCARI (Eq. 2) for the new one in 
MCARIspectroradiometer (Eq. 3). It is possible to change 
all the configuration bands as long as it is the same 
range in the blue to green region.

Since the chlorophyll content varied in individual 
paddy leaves, this variation may occur on the field scale 
as well. The results given by UCR (Eq. 4) have proved 
it thoroughly. The variety of paddy rice cultivars planted 
in Bukateja village situated 500 m a.s.l. do not show 
the same chlorophyll content. It was not influenced 
by the elevation. This situation is applicable both to 
paddy rice and woody plants (C o v i n g t o n , 1975; 
L i  et al., 2013). The elevation factor was genuinely 
influenced by the plant physiological performance 
rather than by the biophysical one (K o f i d i s  et al., 
2003; C l e a v i t t , 2016). In paddy rice, it influenced 
the yield gap (K i t i l u  et al., 2019). The information 
relates to the biophysical characteristic and its change 
occurs based on the difference of time planting or 
day after planting (DAP) of paddy rice in chlorophyll 
content. Both the laboratory analysis and the estimated 
values from both models proposed gave the same 

results. With increasing DAP the chlorophyll content 
decreases as physically the paddy rice leaves colour 
turns into golden yellow. 

As stated above, the chlorophyll content variation 
occurs not only based on the DAP variety but it is also 
affected by several natural factors such as water content 
and its caused drought stressed. An obvious explana-
tion also corresponding with our results presented 
Y a n g ,  L e e  (2001): when the paddy rice plant is 
entering the age of 62 and 110 days, the chlorophyll 
content decreases. The level of chlorophyll observed 
in this study might be lower than its level on another 
day before entering this age. The area of 1 ha was 
minimal. However, we could observe both the spatial 
distribution and variation in the chlorophyll content 
over the paddy field.

CONCLUSION

This study has focused on the chlorophyll content 
estimation and detection both in individual paddy rice 
leaves and on the field scale. The combination of the 
spectral data measurement and the UAV aerial imagery 
was chosen as a potential approach to detect the chlo-
rophyll content of selected cultivars, while the results 
were compared with those from laboratory analyses. 

The laboratory analysis revealed that the chlorophyll 
content of Inpari 32 cultivar is lower than that of Inpari 
33. This fact was confirmed by the modified MCARI 
model. The UCR model gave an opposite result, i.e. 
that Inpari 32 contains more chlorophyll than Inpari 
33 at the same DAP. Then the UAV technology was 
applied to predict the chlorophyll content spatially on 
the field scale. Two conclusions were inferred:

(1) The chlorophyll content variation occurs not 
only with respect to the variety of cultivars planted 
and DAP, but it is also distributed randomly within 
the same DAP and cultivars. This situation means 
that at the same DAP, the chlorophyll content of any 
cultivar (Inpari 32 or 33) can be at the minimum or 
maximum level. 

(2) DAP is corresponding with the growth stages 
or phenology. A rising DAP is accompanied by the 
rising amount of chlorophyll in plant that, however, 
gradually decreases during the grain filling period 
until the plant is ready to harvest. 

Our approach and results will hopefully enhance 
further studies of biochemical and biogeography factors 
based on the spectral reflectance and UAV images. This 
study dealt only with the plant chlorophyll content; 
however nitrogen, water content, soil minerals etc. can 
also be determined based on the UAV method. The 
contribution of remote sensing technology through the 
information provided by UAV is valuable for fulfilling 
the food security program, especially for the countries 
where paddy rice represents a primary carbohydrate 
resource. 

Fig. 6. Condition of paddy rice cover in a paddy field with sparse distribution 
source: own research
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