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INTRODUCTION

Rubber is a globally important agricultural com-
modity, widely used in various applications such as 
healthcare, automobiles, and construction, among 
others. Rubber processing begins at harvesting the 
natural rubber latex (NRL) through a process called 
tapping. Coagulation of the collected NRL represents 
a vital post-harvest processing step, wherein coagula-
tion is usually carried out with the aid of acids. Acid-
mediated NRL coagulation involves the neutralization 
of negatively charged protein complexes that leads to 
aggregation, and the eventual coagulation (G i d r o l  et 
al. 1994; D e  O l i v e i r a  R e i s  et al. 2015). Formic 
acid has long been used to induce NRL coagulation 

(D i t m a r , 1908), although other acids have already 
been reported to facilitate coagulation such as hydro-
chloric acid (K a r u n a r a t n e ,  P i y a d a s a , 1973), 
sulfuric acid (B e s t ,  M o r r e l l , 1955), and biomass-
derived acids (B a i m a r k ,  N i a m s a , 2009). The 
type of acid used to drive coagulation is known to 
influence the physical properties of the coagulated 
rubber (C h u k w u  et al., 2010). Thus, the differentia-
tion of coagulated rubber based on the coagulant used 
is not only important in terms of practicality, but also 
in trade and regulatory considerations.

Rubber is  one of the top agricultural  crops 
in the Philippines (P h i l i p p i n e  S t a t i s t i c s 
A u t h o r i t y , 2017), wherein majority of the Philippine 
rubber industry is located in the southern part of the 
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Philippine archipelago. Locally, the coagulated NRL 
is referred to as ‘cuplumps’, the equivalent of cup 
coagulum. Cuplumps represent the earliest rubber 
products that are traded and sold. In order to ensure the 
quality of the sold cuplumps, the Philippine government 
has strongly recommended the use of formic acid to 
induce coagulation (D O S T - P C A A R R D , 2014). 
However, due to logistics reasons and/or problems 
related to the supply of formic acid, widespread use of 
acids other than formic acid has been rampant. These 
‘non-standard acids’ include vinegar-derived acetic 
acid, and automobile battery-derived sulfuric acid. 
The resulting ‘non-standard cuplumps’ are then sold 
claiming to be formic acid-coagulated. This fraudulent 
activity stems from the fact that formic acid-coagulated 
cuplumps are priced higher compared to the non-formic 
acid-coagulated cuplumps. Considering that the overall 
quality of the rubber products produced is dependent 
on the quality of the cuplump (W i s u n t h o r n  et 
al., 2015), ensuring the consistency and quality of 
the produced cuplumps is vital in safeguarding the 
competitiveness of the Philippine rubber industry. 
Thus, the differentiation of formic acid-coagulated 
cuplumps from non-formic acid-coagulated cuplumps 
is critical in enforcing compliance and maintaining 
trade standards. However, such method of classifying 
cuplumps according to the acid coagulant used remains 
to be created. Against this backdrop, this study aims to 
utilize machine learning in differentiating formic acid-
coagulated cuplumps from non-formic acid-coagulated 
cuplumps using properties that are easy to measure. 

MATERIAL AND METHODS

Rubber coagulation

The Department of Agriculture – Zamboanga 
Peninsula Integrated Agriculture Center  (DA-

ZAMPIARC) provided the rubber cuplumps. The NRL 
was harvested from rubber trees (Hevea brasiliensis) 
and was coagulated using 5% (v/v) formic acid, acetic 
acid, and sulfuric acid. Naturally coagulated rubber 
cuplumps (no acid) were also prepared. 

Surface wetting property

The interaction of the cuplumps with water was 
evaluated using contact angle measurements using 
ThetaLite100 (Biolin Scientific, Germany). Cuplumps 
were sliced into strips and dabbed before testing. 
At room temperature, the capillary of the device 
was filled with distilled water that runs through the 
syringe thereby producing a 5 μl sessile drop. The 
resulting maximum contact angles were measured. 
The analysis was conducted in triplicates for each 
cuplump sample.

Vertical tensile strength

Samples were sliced until the dimensions of 1 cm 
width × 5 cm length × 2 mm thickness were reached. 
The samples were then vertically clipped and stretched 
at 500 mm min–1 with the capacity of 100 N using 
the Universal Testing Machine (UTM) Autograph 
AGS-X (Gester Instruments, China). The analysis 
was conducted in triplicates for each cuplump sample.

Density

Cuplumps with dimensions of 1 cm3 were weighed. 
The volume occupied by the cuplumps was determined 
through water displacement. A 10 ml graduated cylinder 
was filled with 5 ml of water for the initial volume. 
A cuplump sample was then placed inside the gradu-
ated cylinder, and the new volume was recorded. The 
density of the samples was then obtained by using the 

Fig. 1 The top images represent 
the macroscopic picture of the 
rubber cuplumps coagulated with  
A) formic acid, B) acetic acid, 
C) sulfuric acid, D) no acid. The 
bottom images are the surface 
morphologies obtained through 
scanning electron microscopy of 
the cuplumps coagulated with 
E) formic acid, F) acetic acid, 
G) sulfuric acid, H) no acid.
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formula: density = mass/volume. The analysis was 
conducted in triplicates for each cuplump sample.

Classification using machine learning

The obtained data from the aforementioned measure-
ments were used to formulate a classification algorithm 
using support vector machine (SVM) as implemented 
in TIBCO Statistica (Version 13.3, 2017). The results 
were validated by applying a 10-fold cross validation. 
Specific details of the classification algorithm are 
provided in the text.

RESULTS

The four cuplump types analyzed in this study 
were inspected visually (Fig. 1). Macroscopic and 
microscopic features were similar, indicating that 
cuplump differentiation based on visual attributes 
is difficult. Thus, other properties of the cuplumps 
that can be measured easily were used for classifica-
tion and differentiation. The selected properties are 
the vertical tensile strength, surface wetting in the 
form of water contact angle, and density (Table 1). 
The measurements were used as the continuous de-
scriptors for SVM classification in order to formulate 
a classification algorithm. Two SVM classification 
models were formulated. Model A is a binary classi-
fication model wherein the differentiation is limited 
to formic acid-coagulated cuplump and non-formic 
acid-coagulated cuplump. On the other hand, model 

B is a more thorough classification model, which 
differentiates the cuplumps into classes based on the 
acid used to induce coagulation. Table 2 shows the 
specifications and classification performances of both 
models. The performance of the model is measured 
in terms of accuracy, which refers to the successful 
classification done by the algorithm. The SVM clas-
sification results presented are typical showing the 
optimal weights assigned to the support vectors that 
gave rise to the hyperplanes or decision boundaries 
used in the classification. The performances of the 
two SVM classification models were satisfactory, as 
revealed by their respective class accuracy ratings 
(Table 2). Model A, the binary classification model, 
showed reliable classification ability, with an overall 
class accuracy of 92%, and cross-validation accuracy 
of 71%. Model B likewise exhibited an acceptable clas-
sification ability, although lower than model A. Thus, 
derivative models from model A were formulated in 
order to identify the individual contributions of each 
rubber property in the classification algorithm. One 
rubber property was systematically removed from the 
binary classification algorithm, while evaluating the 
performance. Table 3 summarizes the results, indicating 
that rubber density and contact angle were essential 
for the classification models.

DISCUSSION

Rubber coagulation under acidic conditions is 
known to affect various physical properties of rubber, 
such as tensile strength, and cross-linking density (S i t i 
M a z n a h  et al., 2008). Thus, one of the parameters 
measured in response to acid coagulant used is the 
cuplump tensile strength. It was found that the rubber 
cuplumps coagulated naturally (no acid) had a statisti-
cally higher tensile strength than the acid-coagulated 
cuplumps. This result resonates with the observation 
that at a certain lower pH, rubber tensile strength 
decreases due to the denaturation of proteins that are 
implicated in rubber toughness (S i t i  M a z n a h  et 
al., 2008). Other rubber attributes measured include 
density, and surface wetting, wherein it was found that 

Table 1. Average ± standard deviation of measurements for each cuplump 
type that will serve as the continuous predictors for the SVM classification

Cuplump type
Vertical tensile  
strength (MPa)

Density  
(g ml–1)

Contact angle  
(°)

Formic acid 3.89 ± 0.86 1.01 ± 0.04 61.3 ± 9.9

Acetic acid 3.64 ± 0.49 0.94 ± 0.01 56.5 ± 1.6

Sulfuric acid 2.53 ± 0.78 0.92 ± 0.04 55.5 ± 10.4

No acid 9.20 ± 3.8 0.91 ± 0.11 55.2 ± 22.1

Table 2. Optimum support vector machine (SVM) classification specifications and results for the two models. Model A is a binary classification 
model that differentiates formic acid-coagulated cuplumps from non-formic acid-coagulated cuplumps. Model B differentiates no acid, formic 
acid, acetic acid, and sulfuric acid-coagulated cuplumps

Model A Model B

SVM type classification type 1, capacity = 3.0 classification type 1,capacity = 8.0

Kernel type linear radial basis function, gamma = 0.333

Number of support vectors 6 (4 bounded) 9 (0 bounded)

Training set 65% 75%

Class accuracy (%)
train = 100, test = 80, overall = 92,  

cross-validation = 71.4
train = 89, test = 67, overall = 83,  

cross-validation = 44.44
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there was no statistical difference among the samples 
examined. These three rubber physical properties were 
used as continuous descriptors for the classification 
and differentiation algorithm founded on machine 
learning. SVM classification has been utilized for 
agricultural applications such as crop classification 
(M a t h u r ,  F o o d y , 2008; G u e r r e r o  et al., 2012), 
and plant disease identification (R u m p f  et al., 2010). 
In the current scenario, the SVM classification (type 
1) algorithm is more appropriate than the other clas-
sification methods for categorical dependent variables, 
such as discriminant analysis or logistic regression. 
SVM does not require a large sample size, and the 
usual normality assumption of the numerical predic-
tors in discriminant analysis.

The formulated classification models rely on the 
SVM classification function rooted on nonlinear deci-
sion boundaries that are based on the combination of 
the measured physical properties of the rubber cup-
lumps. These models generally attempt to identify if 
formic acid was used as the coagulant, since this acid 
is widely used and accepted. While any acid can induce 
latex coagulation, the resulting rubber quality can vary. 
For instance, using excessive amounts of sulfuric acid 
to induce coagulation can bring significant softness 
deviations (B e s t ,  M o r r e l l , 1955), leading to an 
overall poor rubber quality (O t h m a n ,  L y e , 1980). 
Hence, the ability to identify the coagulant used for 
cuplump processing based on simple rubber proper-
ties is a valuable tool in cuplump quality assessment. 
Model A differentiates formic acid-coagulated rubber 
cuplumps from those that are not, while Model B 
identifies if the cuplump was coagulated using formic 
acid, acetic acid, sulfuric acid, or if no acid was used. 
Suffice to say, the selected rubber physical attributes 
are enough to differentiate one class from the other 
since the constructed classification models exhibited 
reliability, as evidenced by their overall prediction ac-
curacy. Models A and B have a high practical potential 
considering that only three rubber properties that are 
easy to measure are needed to identify the coagulant 

used. However, considering that Model A performs 
better than model B, model A was subjected to further 
optimizations in order to identify the influence of each 
descriptor on the overall predictive performance of 
the algorithm. This was achieved through a systematic 
removal of one descriptor, thereafter the model perfor-
mance was evaluated. As demonstrated in Table 3, the 
descriptors density and contact angle were essential 
for the accurate classification. When either descriptor 
was removed, the performance of the model decreased 
(Models A-1 and A-2). But when the two descriptors 
were utilized, the performance improved, as well as 
the cross-validation accuracy. 

The current work represents a pioneering endeavour 
in rubber cuplump quality assessment based on acid 
coagulant identification. Other assessment and meas-
urement tools essential for regulatory purposes have 
mainly focused on contaminant detection (S o m w o n g 
et al., 2017), rubber moisture (S u c h a t  et al., 2015), 
isoprene units (T u a m p o e m s a b  et al., 2015), vis-
cosity (E h a b e  et al., 2005), among other properties. 
Thus, the presented method is a welcome addition to 
the repertoire of quality monitoring methodologies that 
can further enhance and improve rubber processing.

CONCLUSION

The present work has demonstrated the utility of 
machine learning in differentiating rubber cuplumps 
according to the acid used for coagulation. Two SVM 
classification models were formulated, wherein both 
models exhibited reliable classification ability. The 
first model can distinguish formic acid-coagulated 
cuplumps from non-formic acid-coagulated cuplumps, 
with an overall accuracy of 92% and cross-validation 
accuracy of 71.4%. The second model can identify if 
formic, acetic, sulfuric acid, or no acid was used to 
induce rubber coagulation, with an overall accuracy 
of 83%, and cross-validation accuracy of 44.4%. The 
better model, which implements binary classification, 

Model A-1 Model A-2 Model A-3

SVM type
classification type 1,  

capacity = 1.0
classification type 1,  

capacity = 8.0
classification type 1,  

capacity = 7.0

Kernel type linear linear linear

Continuous  
descriptors

vertical tensile strength,  
density

vertical tensile strength,  
contact angle

density, contact angle

Number of  
support vectors

7 (5 bounded) 7 (5 bounded) 5 (3 bounded)

Training set 65% 65% 65%

Class accuracy (%)
train = 71.4, test = 80,  

overall = 75,  
cross-validation = 57.1

train = 71.4%, test = 60,  
overall = 66.7,  

cross-validation = 42.9

train = 100, test = 80,  
overall = 91.7,  

cross-validation = 85.7

Table 3. Performance of the binary classification models when one descriptor was removed from the algorithm
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was determined to be heavily influenced by the rub-
ber properties of density and water contact angle. The 
results presented can potentially improve the local 
rubber industry by aiding policy enforcement, and 
strengthening regulatory standards.
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