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INTRODUCTION

Elemental chromium (Cr) was discovered by French 
chemist Louis Vauquelin (1797) in the mineral cro-
coite (PbCrO4) in a Siberian gold mine (N r i a g u , 
N i e b o e r , 1988; Ba r c e l o u x ,  B a r c e l o u x , 
1999; M o h a n ,  P i t t m a n , 2006). 

Cr is a natural component of the Earth’s crust 
(average content 100–200 mg kg–1), and belongs to  
24 most common elements occurring in a variety of 
rock materials (igneous, metamorphic, sedimentary, 
etc.), especially ultramafic rocks and their derived soils. 
These materials form 1% of the terrestrial landscape, 
mostly within populated areas of the Circum-Pacific 

and Mediterranean regions (O z e  et al., 2007; I z b i c k i 
et al., 2008; M a n d a l  et al., 2011; F a r k a s  et al., 
2013; S c a n c a r ,  M i l a c i c , 2014).

As Cr is a relatively common element, especially 
in soils, its behaviour and toxicity strongly depend 
on its oxidation state. Cr occurs in the environment 
mostly as trivalent Cr(III) or hexavalent Cr(VI) ions 
(mainly as CrO4

2– anions). In metallic form Cr exists 
in its zero-valent state as elemental Cr(0) (B a r t l e t t , 
J a m e s , 1979; B a r c e l o u x ,  B a r c e l o u x , 1999; 
K i m b r o u g h  et al., 1999; L e g r a n d  et al., 2004; 
S c a n c a r ,  M i l a c i c , 2014). 

In soils, Cr naturally occurs primarily as trivalent 
Cr(III) cations, strongly bound to negatively charged 
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soil particles, binding on iron and aluminum oxides 
and hydroxides or/and complexes with organic com-
pounds in a slightly acidic and alkaline conditions. 
Thus Cr(III) is only slightly mobile, less subjected to 
leaching in the soil profile and much less toxic than 
Cr(VI) (B a r t l e t t ,  J a m e s , 1979; Z a y e d ,  T e r r y , 
2003; D h a l  et al., 2013; S c a n c a r ,  M i l a c i c , 
2014). Cr(III) is discussed as an important micronu-
trient, and also less susceptible to biological uptake 
(P e c h o v a ,  P a v l a t a , 2007). 

On the other hand, Cr(VI)-oxyanions are known 
as highly toxic and mobile compounds, only weakly 
adsorbed by soil particles, soluble in the full pH range 
and stable under strongly alkaline conditions. These 
properties make Cr(VI) easily leached into groundwater 
and more readily available for uptake by plants, due 
to the active mechanism of plant acceptance by trans-
portation through tissues. Although Cr(III) is consid-
ered as a very stable form in common soils, presence 
of oxidized Mn (as electron acceptor for oxidation) 
may rapidly change its form from Cr(III) to Cr(VI) 
(B a r t l e t t ,  J a m e s , 1979; H o s s n e r  et al., 1998; 
Z a y e d ,  T e r r y , 2003; G u h a , 2004; B a n k s  et 
al., 2006; C h e u n g ,  G u , 2007; O n w e r e m a d u , 
U h u e g b u , 2007; B a r r e r a - D i a z  et al., 2012; 
D h a l  et al., 2013; S c a n c a r ,  M i l a c i c , 2014; 
C h o p p a l a  et al., 2015; M a n d a l  et al., 2016; 
K u n h i k r i s h n a n  et al., 2017).

GEOCHEMISTRY – NATURAL OCCURRENCE OF 
HIGH CHROMIUM CONCENTRATIONS IN THE 
ENVIRONMENT

Serpentine soils formed on ultramafic rocks (peri-
dotite and pyroxenite) or serpentinite (metamorphosed 
ultramafic rock), mainly ophiolitic serpentinites, belong 
to primary natural sources of Cr with typically elevated 
Cr concentrations exceeding 200 mg kg–1. The main 
sources of Cr are chromite (trivalent Cr; Fe(Fe,Cr)2O4) 
and Cr-magnetite (hexavalent Cr; Fe(Fe,Cr)2O4) (miner-
als from spinel group) (B e c q u e r  et al., 2003; O z e 
et al., 2004a, b).

Serpentine soils typically show a high content of 
Mg, Fe and trace elements Ni, Cr, Cd, Co, Cu, Mn 
and, on the contrary, significantly decreased levels of 
plant nutrients as Ca, K, N, P. Especially the elevated 
levels of Cr and Ni pose an environmental risk, the 
same as high concentrations (generally more than  
200 mg kg–1) of Mn, namely in oxidized forms, 
which may indicate a significant potential for oxida-
tion of Cr(III) to Cr(VI). However Cr-chromite and  
Cr-magnetite phases do not weather easily, thus present 
Cr occurs mostly in its trivalent Cr(III) state, bound 
in Cr-spinels, Cr-bearing silicates and clay minerals 
(Cr-chlorite, Cr-garnet, Cr-mica, and Cr-epidote) ( 
B e c q u e r  et al., 2003; O z e  et al., 2004b; B i l b a o 
et al., 2008; C h a n g  et al., 2013; B a u m e i s t e r 

et al., 2015). Fe occurs in a variety of Fe(III) oxides 
(magnetite and hematite) and Fe(III) (oxy)hydroxides. 
Phyllosilicates consist of serpentines and chlorites and 
the most common clays are smectites and vermiculites. 
The pH of these soils is then ranging from 4 to 9, but 
mostly is slightly acidic (± 6) (O z e  et al., 2004b).

Specific properties of serpentine soils create a 
quite extreme environment for plants and organisms, 
resulting in special plant biotopes called ‘serpentine 
syndrome’. This vegetation is typical by reduced stat-
ure, increased tolerance to high levels of Mg and Ni, 
and in comparison with plants on other types of soil 
it shows better developed root systems but slower 
growth (K r u c k e b e r g , 2004; O z e  et al., 2004a, 
b; B a u m e i s t e r  et al., 2015). 

After release by weathering from chromite, Cr(III) 
is mainly adsorbed on clay minerals, precipitates with 
Al(III) or Fe(III)-hydroxides in its trivalent form (Oze 
et al., 2007).

Natural oxidation of Cr(III) occurs basically in the 
presence of Mn(IV/III)-oxides, commonly birnessite, 
forming surface coatings on soil minerals, which are 
the most important naturally occurring oxidants of 
Cr(III) and under conditions of pH < 9 (M i l a c i c , 
S t u p a r , 1995; B e c q u e r  et al., 2003; O z e  et 
al.., 2007).

In common soils and rocks Cr occurs mostly in Cr(III) 
trivalent form as amorphous Fe(III)-Cr(III)-hydroxide, 
eskolaite (Cr2O3) and chromite. Its concentrations 
reach to 200 mg kg–1, in dependence on the texture of 
matrix, when soils with fine-grain sizes have higher 
concentrations than sandy sediments (large-grained), 
granite and carbonates. In soils developed on ultramafic 
rocks the levels of Cr reach up to 10 000 mg kg–1.  
As mentioned above, high levels of Cr(VI) are mostly 
caused by anthropogenic activity, serpentine soils 
have been reported as a natural source raising Cr(VI) 
in the environment as well (B e c q u e r  et al., 2003; 
H a w l e y  et al., 2004; O z e  et al., 2004a, b, 2007).

The highest levels of released Cr(VI) from serpen-
tine soils have been found in New Caledonia, where 
displacement of Cr(VI) from mineral surfaces by 
phosphate (coming from nutrient amendments) was the 
main factor of contamination by Cr(VI) (O z e  et al., 
2007). Significant amounts of Cr(VI) were detected 
under vegetation at these soils, where concentrations 
of soluble Cr increased (from 15 to 700 µg l–1) after 
application of phosphorus fertilizer (B e c q u e r  et 
al., 2003; N o v a k  et al., 2014).

Also a study focused on contamination by Cr(VI) 
leached from serpentine soils in ground- and surface 
waters from New Caledonia, California, Italy, and 
Mexico found levels of aqueous Cr(VI) up to 73 µg l–1  
(exceeding the World Health Organization’s limit for 
drinking water – 50 µg l–1) (W H O , 2003; O z e  et 
al., 2007). 

Study of K i e r c z a k  et al. (2008) demonstrated 
higher mobility of Cr from anthropogenic pollution 
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than from lithogenic matrices (K i e r c z a k  et al., 
2008). It even seems that mobility of Cr in serpentine 
soils is quite limited; once river or groundwater are 
draining ultramafic (also metamorphic, volcanic or 
limestone) rocks, ideal conditions for Cr release and 
redox cycling are created. 

Alkaline river water in ultramafic catchments is 
also naturally enriched with Cr (up to 30 µg l–1) as the 
alkaline environment enhance Cr(VI) (MgCrO4, CrO4

2–) 
and also Cr(III) (Cr(OH)3, CrOH(CO3)2

2–) (McClain, 
Maher, 2016) leaching from Cr(III)-containing minerals 
under oxic conditions. Concentrations of Cr(VI) dis-
solved from chromite (FeCr2O4) are linearly increasing 
in dependence on residence time of water (N o v a k 
et al., 2014; S a p u t r o  et al., 2014; M a n n i n g  et 
al., 2015; M c C l a i n ,  M a h e r , 2016).

ANTHROPOGENIC POLLUTION

There is a wide range of anthropogenic pollution 
sources such as: metallurgical industry and steel slag, 
pigments in leather tanning and dyeing, wastes, fungi-
cides, corrosion inhibitors in cooling water and drilling 
muds, wall papers, photographic films, magnetic tapes, 
printing inks, sewages, gas contaminants, electroplat-
ing, chemical manufacturing, wood treatment, glass, 
ceramics and cement products, and contaminations 
caused by poor storage and improper disposal practices 
during these work processes, as well as from the burning 
of natural gas, oil, or coal (P a l m e r ,  W i t t b r o d t , 
1991; E P A , 1998; K o t a s ,  S t a s i c k a , 2000; 
L e i t a  et al., 2009; U . S .  AT S D R , 2012; Ya o  et 
al., 2012; A l l u e  et al., 2014; S c a n c a r ,  M i l a c i c , 
2014; R a d z i e m s k a  et al., 2016). Once Cr is re-
leased from liquid and solid waste sources, it can be 
found in air, soil, and water. While Cr is not stable in 
the atmosphere, the main polluted deposits are soils, 
surface- and groundwaters (P a l m e r ,  W i t t b r o d t , 
1991; G u h a  et al., 2001; J a c o b s ,  T e s t a , 2004; 
U . S .  AT S D R , 2012). Even settlements, deforesta-
tion, agriculture, recreational activities and soil erosion 
may be sources of Cr contamination of the drinking 
water resources (I q b a l  et al., 2013). Thus occurrence 
in atmosphere, waters and soils and possible transport 
to plants and via food chains to animals, makes Cr 
potentially harmful. For humans the most dangerous 
intake of Cr is via inhalation, drinking, eating and 
skin (U . S .  AT S D R , 2012).

The major Cr ore is chromite (FeCr2O4) and 
less common sources are crocoite (PbCrO4) and 
eskolaite (Cr2O3). Chromium ore is mined mainly 
in South Africa, Russia, Kazakhstan, India, Turkey 
and Philippines (C o r n e l i s  et al., 2005; M o h a n , 
P i t t m a n , 2006). 

Reserves found in India belong to the world’s 30 
most polluted places due to mining processes and 
natural oxidation of chromite (D h a l  et al., 2013). 

Natural concentrations of total aqueous Cr in 
groundwater are typically below 10 µg l–1 while at 
contaminated sites levels of Cr(VI) are generally reach-
ing 300 to 500 µg l–1 (H a w l e y  et al., 2004). Also 
anomalous natural Cr(VI) concentrations, related 
with high redox potential, pH values exceeding 10, 
and high concentrations of Na in groundwaters of the 
sandstone aquifer in the Brazilian Bauru Basin reach-
ing the highest concentrations of Cr(VI) 130 µg l–1 
have been reported (B e r t o l o  et al., 2011). A yellow 
colour is imparted to the water at about 1000 µg l–1 
Cr(VI) (P a l m e r ,  W i t t b r o d t ,  1991). 

According to the World Health Organization provi-
sional guideline values are 50 µg l–1 for total Cr concen-
trations, common levels of total Cr in drinking water are 
usually less than 2 µg l–1, but even actual concentrations 
reaching 120 µg l–1 have been detected (W H O , 2008).

Due to known toxic effects of Cr, its concentra-
tions present in water, soil and food are controlled. 
EPA’s maximum contaminant level goal for total Cr 
in drinking-waters is 100 µg l–1 (U . S .  E P A , 2017). 
For example, the State of California standard in line 
with European Council Directive as well as the Czech 
Republic standard state a limit for total Cr content 
in drinking water not exceeding 50 µg l–1 (D e c r e e 
2 5 2 / 2 0 0 4  C o l l . ; Co u n c i l  D i r e c t i v e  9 8 / 8 3 /
E C , 1998; C h o p p a l a  et al., 2013a; C E P A , 2017; 
E c o n o m o u - E l i o p o u l o s  et al., 2017).

The maximum threshold level of Cr(III) in waste 
and groundwaters is 5000 µg l–1. For Cr (total), the 
maximum permissible limit is 2000 µg l–1 for surface 
waters, while goal for Cr(VI) in landfill discharge is 
100 µg l–1, and for drinking water only 50 µg l–1 of 
Cr(VI) (C h o p p a l a  et al., 2013a; M a n d a l  et al., 
2016). 

Common condition of high Cr leaching from soils or 
rocks into ground- and surface waters is considerably 
acidic or alkaline pH. Anthropogenically contaminated 
soils are generally more susceptible to Cr leaching, 
compared to only slightly weathered rocks and naturally 
enriched soils. However, leaching is controlled by a 
variety of other factors, such as present complexing 
agents (organic matter, S2–, Fe(II), Na, PO4

3−, etc.), 
phase (liquid/solid/gas) of the contaminant, age of 
the binding and others (J a c o b s ,  T e s t a , 2004; 
S c a n c a r ,  M i l a c i c , 2014; M a n n i n g  e t  a l ., 
2015; M c C l a i n ,  M a h e r , 2016). More detailed 
description of Cr behaviour in the soil environment 
is described in the following section.

CHROMIUM OCCURRENCE IN THE 
ENVIRONMENT AND ITS TOXICITY

Chromium toxicity

First cases of carcinogenic effects – nose tumors 
caused by Cr pigments of Cr(VI)) and lung cancer 
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described in 1830s led to many discoveries on Cr 
chemical and physical properties. While trivalent Cr 
is after years known as an important nutrient (demon-
strated in 1959) essential to normal carbohydrate, lipid 
and protein metabolism with recommended daily dose 
for humans about 20–200 µg (K o t a s ,  S t a s i c k a , 
2000; P e c h o v a ,  P a v l a t a , 2007; L i  et al., 2012; 
U . S .  AT S D R , 2012; C h o p p a l a  et al., 2013a; 
R o c k e t t  et al., 2015), hexavalent Cr is a strongly 
toxic element, which harmfully affects plants and 
living organisms including humans. 

Due to its high oxidative capacity, Cr(VI) forms 
cross biological membranes readily and their reactions 
with genetic matter lead to carcinogenic and mutagenic 
effects and skin dermatitis (Z a y e d ,  T e r r y , 2003; 
B a n k s  et al., 2006; P e c h o v a ,  P a v l a t a , 2007; 
S c a n c a r ,  M i l a c i c , 2014). Also Cr(III) may cause 
harmful effects, but in comparison with Cr(VI) it is 
far less toxic (S c a n c a r ,  M i l a c i c , 2014).

Speciation of chromium in the soil environment

Information about the presence, oxidation state and 
study of the fate of Cr in soil and groundwater ecosys-
tems have a great importance due to high toxicity and 
carcinogenicity of Cr(VI) and potential transport of 
Cr via surface- or groundwater (U . S .  D O E , 2006; 
L e i t a  et al., 2009). Differences in behaviour are com-
ing from different (+/–) charges of Cr(III) and Cr(VI) 
compounds and their various physical and chemical 
properties and reactivity. Distribution and speciation is 
governed by a combination of geochemical processes 
as oxidation, reduction, adsorption, and precipitation, 
however the oxidation state mainly depends on the pH 
and redox conditions (K o t a s ,  S t a s i c k a , 2000; 
G u h a  et al., 2001; L i  et al., 2012).

Cr behaviour depends on its negative correlation with 
pH and redox potential. Reduction occurs most readily at 
acidic pH, whereas oxidation is faster at strongly alkaline 
pH. These extremely basic conditions are barely found 
in the natural environment, however they can occur at 
anthropogenically contaminated sites (C o r n e l i s  et 
al., 2005; B a r r e r a - D i a z  et al., 2012). 

Thus, soil pH is a key factor affecting geochemi-
cal behaviour of Cr in soil–water systems, especially 
sorption and desorption and speciation (S h a h i d  et 
al., 2017). Low temperature slows the kinetics of oxi-
dizing reaction as well (N r i a g u ,  N i e b o e r , 1988).

When Cr occurs in the aquatic environment, with no 
present agents except H2O and OH–, then Cr(III) exists 
as hexa-aqua Cr(H2O)6

3+ complex (Cr3+) when the pH 
of solution is higher than 4.0. In less acidic solution 
Cr(H2O)6

3+ hydrolyzes to the form Cr(H2O)5(OH)2+ 
(abbreviated as Cr(OH)2+) and Cr(H2O)4(OH)2

+ (ab-
breviated as Cr(OH)2

+). From the neutral to alkaline 
pH region, reduced Cr precipitates as a relatively 
insoluble Cr(OH)3(s). When alkaline solution pH is 
higher than 11.5, the precipitate is dissolved forming 

tetrahydroxo Cr(OH)4
– complex. In solutions with 

Cr(III) concentrations above 10–6 mol l–1, Cr(III) leads 
up to polymerization (P a l m e r ,  W i t t b r o d t , 1991; 
S c a n c a r ,  M i l a c i c , 2014).

In the natural environment Cr species of Cr(III) as 
CrOH2+, Cr(OH)3

0, Cr(OH)4
–, and Cr(OH)2

2– are the 
most frequent, which are slightly soluble and therefore 
less mobile than those of Cr(VI). The Cr(VI) mostly oc-
curs as soluble anion over a wide pH range in chromates 
(CrO4

2–), hydrochromates (HCrO4
–), and dichromates 

(Cr2O2
7–), especially in strongly oxidizing environ-

ments (B a r t l e t t , 1991; S h a r m a ,  F o r s t e r , 
1995; B a r r e r a - D i a z  et al., 2012; C h o p p a l a 
et al., 2012). Cr(VI) present as oxyanion is easily 
adsorbed on the surface of minerals at low pH range 
due to positive charge of the surface bearing inorganic 
hydroxyl groups (clay particles of iron, aluminium 
and manganese), but adsorption is limited at high pH 
values (P a l m e r ,  W i t t b r o d t , 1991; K i m b r o u g h 
et al., 1999; L e i t a  et al., 2009; F i b b i  et al., 2012; 
L a n d r o t  et al., 2012; C h o p p a l a  et al., 2013b; 
S c a n c a r ,  M i l a c i c , 2014). The reduction process 
at acidic pH is faster than in alkaline pH (L e i t a  et 
al., 2009; L a n d r o t  et al., 2012; C h o p p a l a  et al., 
2013b; S c a n c a r ,  M i l a c i c , 2014).

The Cr(VI) form H2CrO4, a strong acid, deproto-
nated when the pH is higher than 1, produces HCr2O7

– 
which occurs within the pH range 1–6.5. CrO4

2– are 
the only ions existing when the pH is higher than 
6.5. At higher Cr(VI) concentrations (more than  
10–2 mol l–1) HCr2O7

– begins to polymerize, resulting 
in Cr2O7

2– dimer formation (P a l m e r ,  W i t t b r o d t , 
1991; M o h a n ,  P i t t m a n , 2006; S c a n c a r , 
M i l a c i c , 2014). Main thermodynamically stable 
Cr species diluted in aqueous solutions in dependence 
on pH and redox potential are shown in the Pourbaix 
Eh-pH diagram (Fig. 1).

Equation (1) shows the Cr(VI) reduction in acidic 
solution, where Cr has a very high positive redox po-
tential. The reduction of HCrO4

– is accompanied by 
the H+ consumption (K o t a s ,  S t a s i c k a , 2000):

HCrO4
– + 7H+ + 3e– → Cr3+ + 4H2O  

(reversible reaction)			               (1)
In more basic solution the reduction of CrO4

2– pro-
ceeds according to the following reaction (K o t a s , 
S t a s i c k a , 2000):

CrO4
2– + 4H2O + 3e– → Cr(OH)3 + 5OH–  

(reversible reaction)			               (2)
In the absence of complexing agents, other than 

H2O or OH–, Cr(III) occurs as hexa-aquachromium 
and its products of hydrolysis, shown in the following 
equations (K o t a s ,  S t a s i c k a , 2000):

Cr(H2O)6
3+ + H2O → Cr(OH)(H2O)5

2+ + H3O+ 

(reversible reactions)			                (3)
Cr(OH)(H2O)5

2+ + H2O → Cr(OH)2(H2O)4
+  + 

H3O+ (reversible reactions)		               (4)
Cr(OH)2(H2O)4

+  + H2O → Cr(OH)3.aq + H3O+ 

(reversible reactions)			                 (5)
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The following reactions (6–8) illustrate several 
Cr(VI) species, as they are dependent on both pH and 
total Cr(VI) concentration (K o t a s ,  S t a s i c k a , 
2000; S c a n c a r ,  M i l a c i c , 2014):

H2CrO4 → H+ + HCrO4
–		               (6)

HCrO4
– → H++ CrO4

2–		               (7)
2 HCrO4

– → Cr2O7
2 + H2O		               (8)

Redox behaviour of chromium

There are a number of agents, which can mitigate 
the toxicity of Cr(VI) by its reduction to Cr(III) spe-
cies (C h o p p a l a  et al., 2012). Reduction of Cr(VI) 
to Cr(III) can proceed in the presence of electron do-
nors such as available carbon and reduced Fe(II) ions, 
increasing in acid conditions. Generally, reduction of 
Cr(VI) to Cr(III) affecting immobilization of Cr(III) 
via adsorption and precipitation belongs to the main 
reducing processes (P a r k  et al., 2005, 2006; M o h a n , 
P i t t m a n , 2006; C h o p p a l a  et al., 2015).

Due to reduction processes, when Cr(VI) in soils 
undergoes proton (H+) consumption (or hydroxyl 
(OH−) release) forming Cr(III), soil pH is increasing 
(P a r k  et al., 2006). This leads to enhanced Cr(III) 
adsorption, related to pH-dependent surface charge 
and precipitation as Cr(OH)3 (P a r k  et al., 2006; 
C h o p p a l a  et al., 2015; v o n  d e r  H e y d e n , 
R o y c h o u d h u r y ,  2015).

Reduction of chromium

Influence of Fe. Chromium present in soils is as-
sociated with Fe-phases, Fe(II)-bearing minerals and 

dissolved Fe(II) species, respectively (L e g r a n d  et 
al. 2004; G a o ,  S c h u l z e , 2010). Ferrous oxides 
and oxyhydroxides as ferrihydrite (Fe2O3•0.5H2O), 
goethite (FeOOH) and hematite (Fe2O3) can reduce 
toxic Cr(VI) to less toxic Cr(III), especially due to their 
abundant occurrence and large surface area (surface 
area decreases in the order ferrihydrite > goethite > 
hematite) (L e g r a n d  et al., 2004; S t a n i n , 2004; 
G a o ,  S c h u l z e , 2010; C h o p p a l a  et al., 2013b; 
L o n g m i r e  et al., 2013; v o n  d e r  H e y d e n , 
R o y c h o u d h u r y , 2015). 

The main reduction equations (9–12) are as follows:
3Fe2+ + CrO4

2− + 4H2O → 3Fe3+ + Cr3+ + 8OH−	
					                      (9)

Cr6+ + 3Fe2+ → Cr3+ + 3Fe3+ respectively      (10)
(P a l m e r ,  W i t t b r o d t , 1991; L e g r a n d  et 

al., 2004; C h o p p a l a  et al., 2013b)
3Fe2+ + CrO4

2– + 8H2O → 3Fe(OH)3 + Cr(OH)3 
+ 4H+					                    (11)

(L o n g m i r e  et al., 2013)
[3FeO] + 6H+ + Cr(VI)(aq) → Cr(III)(aq) + 3Fe(III)(aq) 

+ 3H2O				                           (12)
S t a n i n , 2004).
Trivalent state Cr(III), the most thermodynamically 

stable form of Cr in soils, co-precipitates with goethite 
(a-FeOOH) forming an a-(Fe,Cr)OOH solid solution. 
This happens due to the structural similarity between 
the host Fe(III) mineral and the pure Cr surface pre-
cipitate phase (a-CrOOH) (C h a r l e t ,  M a n c e a u , 
1992; L e i t a  et al, 2009; L a n d r o t  et al., 2012). 

The reduction of Cr(VI) by ferrous iron can be 
described by the overall reaction (Eq. 10), when the 
pH of solution is less than 10 and concentrations of 
PO4

3–
 are less than 0.1 mM (P a l m e r ,  W i t t b r o d t , 

1991). Phosphate (PO4
3–) and common use of phospho-

rus amendments into the soil are known to increase the 
rate of oxidation of Fe(II) by dissolved oxygen, thus 
decreasing the reduction potential of ferrous iron. Also 
phosphate may substitute Cr(VI), due to the competi-
tion for the same sites in alkaline pH from mineral 
surfaces, which leads to the increase of Cr(VI) con-
centrations (N r i a g u ,  N i e b o e r , 1988; P a l m e r , 
W i t t b r o d t , 1991; O z e  et al., 2007).

Other reducing agents. Besides ferrous oxides, 
Cr(VI) can be naturally reduced to Cr(III) by other 
various reducing agents as S2– ions of sulfides, dis-
solved organic carbon in organic matter (DOC) and 
also by microbial communities, even though increasing 
levels of Cr in soils decrease microbial respiration and 
plant growth as well. Simultaneously organic carbon 
stimulates microorganisms and increases levels of DOC, 
which is an important electron donor in the reduction 
processes of Cr(VI) ions (P a l m e r ,  W i t t b r o d t , 
1991; W i t t b r o d t ,  P a l m e r , 1997; S t a n i n , 2004; 
C h e u n g ,  G u , 2007; C h o p p a l a  et al., 2012; 
S c a n c a r ,  M i l a c i c , 2014). A reducing effect of 
the brown seaweed Ecklonia sp. biomass has been 
published (P a r k  et al., 2005). Microbial respiration 

Fig. 1. Pourbaix diagram (Eh-pH diagram). Main thermodynamically 
stable Cr species diluted in aqueous solutions (no other complexing 
agents than H2O or OH) in dependence on pH and redox potential. 
Concentration of total Cr is 10–6 mol l–1 (according to S c a n c a r , 
M i l a c i c , 2014)
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commonly accompanying reduction processes and 
respiratory by-products is presented in the following 
equations (13–14) (S t a n i n , 2004):

3C3H5O3− + 12Fe(OH)3 → 3C2H3O2− + 12Fe2+  
+ 3HCO3− + 8H2O + 21OH− 		             (13)

3Fe2+ + HCrO4− + 8H2O → 3Fe(OH)3 + Cr(OH)3 
+ 5H+					                (14)

Further, Cr(VI) can be immobilized by reduction 
and sorption onto soil colloids, a mechanism depend-
ing on their special properties (quality and quantity of 
the clay-minerals, inorganic carbon, cation exchange 
capacity and pH conditions), although under alka-
line to sub-neutral conditions the process of sorption 
Cr(VI) does not work (W i t t b r o d t ,  P a l m e r ,  1997; 
B a n k s  et al., 2006; L e i t a  et al., 2009; L a n d r o t 
et al., 2012; S c a n c a r ,  M i l a c i c , 2014). Inorganic 
Cr(III) can be sorbed by silicates, due to their partially 
negatively charged surfaces, while Cr(III) organic 
complexes are rather sorbed by organic matter. Actual 
behaviour and kinetics of these processes are strongly 
dependent on pH, extent of surface area, number of 
active sites, and temperature (C o r n e l i s  et al., 2005).

It is possible that both Cr(VI) reduction (i.e. proton-
consuming reaction) and Cr(III) immobilization (i.e. 
proton release reaction) can occur simultaneously in 
soils. The Cr(VI) reduction accompanied by Cr(III) 
immobilization leads to the decrease of H+ consump-
tion, resulting in smaller increase in pH than predicted 
(C h o p p a l a  et al., 2013b). 

Chromium complexes with natural organic mat-
ter are important for Cr speciation in different en-
vironments. While information on the coordination 
of chemistry and stability of Cr with natural organic 
matter are still not completely clear, a number of 
studies have described some of these relationships in 
the Cr–soil–water–organic matter system. Organic 
matter, such as humic acids and fulvic acids and also 
farmyard and poultry manures and composts, enables 
the reduction of free Cr(VI) ions in the soil solution 
under acidic conditions, because of its high redox 
potential value (> +1.3 V under standard conditions). 
Humic substances with Cr(III) form kinetically stable 
complexes which significantly affect its mobility in 
the environment. Bounding of these complexes on 
soil particles makes Cr(III) just slightly mobile, while 
soluble organic matter increases its mobility rapidly 
(C o r n e l i s  et al., 2005; B a n k s  et al., 2006; P a r k 
et al., 2006; C h o p p a l a  et al., 2012, 2013b, 2015; 
G u s t a f s s o n  et al., 2014).

The presence of organic carbon provides a stock 
of electron donors, which is also the energy source 
for the microbial communities (P a r k  et al., 2006; 
C h o p p a l a  et al., 2012, 2015). 

The reducing potential of organic carbon depends 
on its reactivity, concentration of pollution, and mi-
crobial activity (C h o p p a l a  et al., 2012). Addition 
of organic amendments belongs, due to their functions, 
to remediation processes (C h o p p a l a  et al., 2015).

Soil organic matter containing hydroquinone 
(C6H6O2) (natural organic matter) acts as potential 
electron donors for the reduction of Cr(VI) accord-
ing to the following equation (15) (L o n g m i r e  et 
al., 2013):

1.5 C6H6O2 + CrO4
2– + 2 H+ → 1.5 C6H4O2  

+ H2O + Cr(OH)3			              (15)
It has been reported that humic acids may prevent 

reduction of Cr(VI) via supramolecular interaction 
between Cr(VI) and humic acids micelles. Thus humic 
acids may increase the uptake by plants, bioavail-
ability and mobility of Cr in the environment leading 
to venting the toxicity of hyper-accumulated Cr(III) 
(L e i t a  et al., 2009; W i t t b r o d t ,  P a l m e r , 1997). 
The accumulation of Cr(III) by plants is increased in 
the presence of organic acids: while amino acids are 
less effective, carboxylic acids are more effective in 
the mobilization of Cr from soil (S r i v a s t a v a  et 
al., 1999; L e i t a  et al., 2009). 

Oxidation of chromium

Kinetics of the Cr(III) oxidation depends on a variety 
of factors as biological, geological and chemical condi-
tions, including pH, redox and occurrence of present 
nutrients, as well as microbial activity making the 
actual ratio of Cr(VI)/Cr(III) very complex (H a w l e y 
et al., 2004). Oxidation of Cr in soil can be facilitated 
by present low molecular mass organic acids (citrate, 
gallic acid, etc.), which increase mobility and solubil-
ity of Cr(III). On the other hand, complexation with 
high molecular mass organic ligands is very stable 
and relatively dissociation- and oxidation- resistant 
(N r i a g u ,  N i e b o e r , 1988).

Oxidation by manganese oxides. The trivalent form 
Cr(III) creates strong complexes widely bound to soil 
minerals. This makes it less soluble, less available for 
plant uptake, thereby much less toxic for plants and 
organisms (C h o p p a l a  et al., 2013b).

Mn oxides, which occur commonly as coatings on 
mineral grains and are the only known naturally occur-
ring oxidants of Cr, catalyze the oxidation of Cr(III) 
to Cr(VI) (G u h a  et al., 2001). However Cr(III) ions 
are also sorbed to Mn oxides, especially at acidic pH 
range, when soluble Cr(III) is easily adsorbed on the 
surface of negatively charged Mn(IV) oxides (zero 
point of charge is in the range of 2–5). The oxidation 
process by Mn(IV) oxides can be increased in the 
presence of low-molecular-mass organic ligands in 
soil. Therefore Mn(IV) oxides are the most important 
natural oxidants for Cr(III) in soils, sediments, and 
waters (R e d d y ,  D e L a u n e , 2008; L a n d r o t  et 
al., 2012; S c a n c a r ,  M i l a c i c , 2014). 

In the presence of the base anhydrides such as 
MgO, FeO, and CaO, pH is rapidly increased. Once 
alkaline pH releases their respective hydroxides into 
water, combination of increased alkalinity of water, 
oxidation by ferrous–ferric conversion and the presence 
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of Mn oxides lead to the transformation of Cr(III) to 
Cr(VI) (D h a l  et al., 2013). Chromium reactivity in 
the presence of Mn(IV) oxides is shown in equations 
(16–18) below:

3MnO2 + 2Cr(OH)3 + 2H+ → 4H2O + 3Mn2+ 
+ 2CrO4 

2– (reversible reactions)             (16)
(L o n g m i r e  et al., 2013)
2Cr3+ + 3δ MnO2 (s) + 2H2O → 2HCrO4

− + 3Mn2+ 
+ 2H+ (reversible reactions)            (17)

Cr(OH)2+ + 3δ ⋅MnO2 (s) + 3H2O → HCrO4
− 

+ 3MnOOH (s) + 3H+ (reversible reactions)        (18)
(S t a n i n , 2004).
Even though Mn oxides are important agents in 

natural oxidation of Cr(III), reduction by organic matter 
is a significant competitor changing the Cr(III) and 
Cr(VI) ratio in soils (N r i a g u ,  N i e b o e r , 1988).

Oxidation of Cr by Mn agents can be also blocked 
by Mn(IV) reduction to Mn(II) ions, formed during 
Cr oxidation bonded on the surface of Mn(IV) oxides. 
This corresponds to the findings that Cr oxidation is 
increasing as extractable Mn is decreasing (N r i a g u , 
N i e b o e r , 1988). 

Elementary transformation, oxidation and reduction 
processes of Cr in soil and soil solution are schematized 
in Fig. 2 presenting an overview of general oxidation-
reduction processes of Cr in soil and soil solution.

The transformation scheme shows the Cr–soil–wa-
ter transport system, where Cr(III) is mobile in both 
directions, from soil to water via solubilization or 
complexation and from the water to soil via adsorp-
tion or precipitation, while Cr(VI) passes only from 
soil to the water system via desorption or diffusion 
or stays adsorbed in soil.

Knowledge on chromium oxidizing (KMnO4, 
H2O2, HClO4, MnO2, PbO2, K2S2O8, bromine wa-
ter (Br2 + H2O), CCl4, (NH4)2S2O8, etc.) and reduc-
ing (H3SO3, Fe(OH)2, ascorbic acid, hydroquinone, 
SO3

2−, S2O3
2−, etc.) agents was used in many studies 

(L i c h t i n ,  1930; Ya m a m o t o ,  O h a s h i , 1970; 
H a r a , 1983; D u l s k i , 1996; R e v a n a s i d d a p p a , 
K i r a n  K u m a r , 2001; B o r g e s  et. al., 2002; M a , 
T a n n e r , 2008; S c a n c a r ,  M i l a c i c , 2014). At 
present, however, methods for the use of complexing 
agents, precipitation, adsorption and, above all, the 
effort to analyze natural samples in unchanged form 
come to the fore.

ANAlyTICAl SpeCIATION meThODS AND 
PROBLEMS ASSOCIATED WITH Cr(III)/Cr(vI) 
DeTeRmINATION

Environmental conditions of soils and water evi-
dently represent a very complex system and thus there 
are a number of factors affecting Cr speciation, resorp-
tion, coprecipitation, fractionation and distribution as 
summarized in the literature review. These findings 
suggest reliable assessment of Cr fate and potential 
toxicity and transport is a really difficult task and 
determination of its species is quite limited.  

Errors occurring during sample processing and 
during extraction lead to over- or under- estimation 
of each Cr(III)/Cr(VI) concentration results. 

To reach relevant and close to original speciation 
data it is necessary to fulfill the requirements for 
sampling, conservation of species during the sample 
storage, sample pretreatment, extraction, separation 
and the determination of Cr species. 

Performance of the speciation analysis directly after 
sampling has a great importance as well (K a r a t e p e 
et al., 2010; L a n d r o t  et al., 2012; S c a n c a r , 
M i l a c i c , 2014; M a r c i n k o w s k a  et al., 2016). 

Processes affecting the Cr form during treatment 
have been described. The water content (naturally 
moist/dried sample) quite significantly affects manga-
nese oxidation-reduction processes in soil important for 
potential Mn oxidation of Cr (K a b a t a - P e n d i a s , 
M u k h e r j e e , 2007; T r e b i e n  et al., 2011; W o l f 
et al., 2011). Refrigeration or freezing of leachates 
for Cr speciation disturbs the speciation of the real 
sample after quite a short time (W o l f  et al., 2011). 
Also the type of polypropylene and glass vials or 
PVC tubes may affect reliability of the analysis due 
to background contamination (M a r c i n k o w s k a 
et al., 2016).

Changes in Cr speciation during a few-day storage 
depending on the content of organic matter, concentra-
tion of Cr and pH of soil have been observed (K o z u h 
et al., 2000).

As Cr(VI) converts rapidly to Cr(III) under acidic 
conditions, according to USEPA methods aqueous 
samples must be preserved at pH of 9.0–9.5 and ana-
lyzed within 24 h (W o l f  et al., 2011). 

Sensitivity of the instrumental technologies for Cr 
determination had been rather insufficient until the 
mid-1980s. To determine Cr(VI) in natural samples, 

Fig. 2. Transformation, oxidation and reduction processes of Cr in soil 
and soil solution (according to S c a n c a r ,  M i l a c i c , 2014)
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generally preconcentration was necessary, feasible 
rather for specialized laboratories than regular moni-
toring (C a t a l a n i  et al., 2015). 

Since then numerous studies have been performed to 
disclose the behaviour of Cr in complex environmental 
systems, as well as to optimize its determination, es-
pecially speciation methods. Selective techniques for 
the speciation and determination of Cr include liquid 
to liquid or solid phase extraction, coprecipitation, 
electrodeposition followed by appropriate instrumental 
analysis (K a r a t e p e et al., 2010).

However, for each speciation method it is neces-
sary to avoid errors and to set up the method correctly, 
as the Cr species are not stable. Some complications 
which may occur during the Cr determination have been 
described (I A E A , 2007; K a r a t e p e  et al., 2010; 
N o v o t n i k  et al., 2013; S c a n c a r ,  M i l a c i c , 
2014; C a t a l a n i  et al., 2015; M a r c i n k o w s k a 
et al., 2016).

Alkaline extraction with sodium carbonate or so-
dium hydroxide was one of frequently used methods 
for Cr(VI) determination in environmental matrix 
samples. During the extraction process soluble Cr(III) 
can be oxidized, which may lead to falsely positive 
detection of Cr(VI). This was the case of the Cr(VI) 
detection in food samples when measuring Cr us-
ing electrothermal atomic absorption spectrometry 
(ETAAS) after alkaline extraction. It was a serious 
issue, as Cr(VI) should be reduced to Cr(III) in the 
presence of organic matter, once it is not stable in 
this matrix (N o v o t n i k  et al., 2013, 2015; E F S A , 
2014; Va c c h i n a  et al., 2015).

Also Cr(VI) determination in coloured samples 
by spectrophotometry, interference effects caused 
by the presence of coloured species as turbidity and 

colloidal particles occur. Thus the coloured species 
must be removed by selective retention sorbents, for 
example columns filled with Florisil in the determina-
tion of Cr(VI) in dyed leathers (S c a n c a r , 2007a; 
S c a n c a r ,  M i l a c i c , 2014). 

In the case of using HPLC for Cr determination, 
parameters such as column type, eluent composition 
and pH, as well as injection volume must be optimized 
(C a t a l a n i  et al., 2015).

A number of factors needed to be taken into account 
while measuring Cr with LC-ICP-MS technique have 
been described. Matrix effect of high salt content, 
chlorides, sulphates, carbon compounds, organic li-
gands, corrosion of metallic parts of the instrument, 
underestimation of Cr(VI) in acidic samples due to the 
reduction caused by electron donors of the eluent or 
chlorine polyatomic interferences, belong to complica-
tions of the method (S c a n c a r ,  M i l a c i c , 2014). 

Multielement analyses are known for interfer-
ences which may disturb Cr speciation due to different 
separation conditions for Cr in the presence of other 
elements. Thus the application of complexing agent 
is needed (M a r c i n k o w s k a  et al., 2016).

The detection limits of selected Cr determination 
techniques are presented in Table 1. 

CONCLUSION

Despite the Cr toxicity, mobility and speciation in 
the environment having been studied for decades, there 
are still numerous issues concerning how to pretreat 
and determine Cr in environmental samples properly 
because of the well-known Cr(VI) lability. Cr(VI) 
reacts with a lot of reducing agents, thus at small 

Method Specie
Detection  

limits  
(µg. L–1)

Detection  
limits  

(μg.kg–1)

Detected  
values  

(µg. L–1)

Detected  
values  

(μg.kg–1)
References

HPLC-ICP-MS Cr(tot) Hagendor fe r,  Goess l e r, 2008;  
Mcsheehy  Nash ,  2008;  

Bedna r  et al., 2009;  
Ca t a l an i  et al., 2015;  

M a r c i n k o w s k a  et al., 2015,  
2016, 2017; S a k a i  et al., 2013;  

Vacch ina  et al., 2015

including HPLC/I 
CP-DRC-MS

Cr(VI) 0.02–0.5 1–10 0.25–50 11–14530 

Cr(III) 0.1–2.13 0.7–6.4 13–1800 

IC-ICP-MS

Cr(tot)

Rodriguez-Gonzalez et al., 2005;  
Saka i  et al., 2005;  

K u t s c h e r  et al., 2012, 2016 
Cr(VI) 0.0009–10 0.0002 0.055–0.34 0.0425–77.50

Cr(III) 0.0132–10 0.00038 0.05 69.67–71.44

Table 1. Determination methods
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GC-ICP-MS

Cr(tot) 0.0039–0.02 0.132–0.154

Yang  et al., 2004Cr(VI)

Cr(III)

CE-ICP-MS

Cr(tot)

L i ,  Ya n , 2007;  
C h e n  et al., 2015

Cr(VI) 0.1–1.9 25–40
5.14 × 105 
–9.3 × 105

Cr(III) 0.18–1.8 25–42.5
4.71 × 105 

– 1.03 × 106

ICP-MS

Cr(tot) 0.15–2.5 0.063–10 
2.9 

–1.842 × 104
van  de  Wie l , 2003;  

Ba l a rama  Kr i shna  et al., 2005;  
Rodriguez-Gonzalez et al., 2005;  

Wi lbu r  et al., 2012;  
Khan  et al., 2013;  
Zhang  et al., 2013

Cr(VI) 1– 5 2.4 0.04–970

Cr(III) 1– 5 1.2 0.09–1940

ICP-OES/AES

Cr(tot) 0.65–36* 4.443 3.75
1.7 × 103 

–1.5 × 105
Miyazak i ,  Ba rnes , 1981;  

Hwang ,  Wang , 1994;  
van  de  Wie l ,  2003;  
Na r in  et al., 2006;  

Wi lbu r  et al., 2012;  
Khan  et al., 2013; Coelho, 2016

Cr(VI) 0.4–6 200–2000
3.38 × 103 

–2.7 × 104

Cr(III) 0.81–6 

IC Cr(tot)

Madden  et al., 2011;  
Aggrawa l ,  Roh re r, 2016with suppressed  

conductivity  
detection 

Cr(VI) 0.17–0.64 1.711–4.66 ppt 1.17–11.4
21.01 ppt 
–1.17 ppb 

Cr(III)

IC-UV/Vis Cr(tot)
D ionex , 2003;  

Thermo Fisher Scientific, 2012;  
Wi lbu r  et al., 2012;  

Basuma l l i ck ,  Roh re r, 2016
with postcolumn  
derivatization

Cr(VI) 0.001–1 
0.0032 

–0.2690

Cr(III)

FPLC-ETAAS/ 
CIM-ETAAS

Cr(tot)

IAEA, 2007;  
Scanca r  et al., 2007b

Cr(VI) 1.5 15–20 47–71.4
1.27 × 105 

–1.035 × 106 

Cr(III)

ET-AAS

Cr(tot) 0.18 0.05–0.5

Spe r l i ng  et al., 1992;  
Husakova  et al., 2005

Cr(VI) 0.16 0.05–0.5

Cr(III)

AAS/GFAAS/FAAS

Cr(tot) 5 15–5 × 104

Spe r l i ng  et al., 1992;  
Na r in  et al., 2006; 
Wi lbu r  et al., 2012

Cr(VI) 0.3–2.3 5–5 × 104

Cr(III) 0.1–1 20–2000
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NAA/RNAA

Cr(tot) 5 4.88  1390–5450

Wi lbu r  et al., 2012;  
Kuze l ewska  et al., 2016

Cr(VI)

)Cr(III

GC-FPD

Cr(tot) 2 0.1–19.6

Ding  et al., 2005Cr(VI)

Cr(III)  

XRF

Cr(tot)
< 10 ppm 

–0.05 µg.kg–1**
< 2.265 × 108

Hur s t  et al., 2011Cr(VI)

Cr(III)

DPAdSV

Cr(tot) 0.00957
0.178 

–1.134 × 104

Dominguez  et al., 2001;  
Dominguez  ,  A rcos , 2002;  

Dominguez-Renedo et al., 2008
Cr(VI)

0.057 
–0.644 

0.04 
–3.510 × 103

Cr(III) 1.56
0.053 

–1.134 × 104

CAdSV

Cr(tot) 0.002 0.05–1.51

Bobrowsk i  et al., 2004;  
Husakova  et al., 2005;  

Bas , 2006
Cr(VI)

0.00988 
–0.00416

0.097–0.60

Cr(III)

Coulometry

Cr(tot)

Manova  et al., 2007Cr(VI) 1.9 < 1.9–51

Cr(III)

Spectrophotometry

Cr(tot)
Wrobe l  et al., 1997;  

Scanca r  et al., 2007a;  
Naga ra j  et al., 2009;  
Rez i c ,  Ze ine r, 2009

Cr(VI) 0.06–15 500–2500 < 0.5–716 300–3000

Cr(III)

HPLC = high pressure liquid chromatography, ICP = inductively coupled plasma, MS = mass spectrometry, LC = liquid chromatography, GC = 

gas chromatography, CE = capillary electrophoresis, IC = ion chromatography, OES = optical emission spectrometry, AES = atomic emission 

spectrometry, FPLC = fast protein liquid chromatography, ETAAS = electrothermal atomic absorption spectrometry, CIM = convective  interac-

tion media, AAS = atomic absorption spectrophotometry, GFAAS = graphite furnace atomic absorption spectrometry, FAAS= flame atomic 

absorption spectroscopy, NAA = neutron activation analysis, RNAA = radiochemical neutron activation analysis, FPD =  flame photometric 

detector, XRF = X-ray fluorescence analysis, CSPE = carbon screen-printed electrodes, DPAdSV = differential pulse adsorptive stripping vol-

tammetry, CAdSV = catalytic adsorptive stripping voltammetry

*Detection limit (DL) value = 0.7 µg. L–1 based on own experience,**DL value < 10 ppm based on own experience
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concentrations it may not be considered a threat. In 
the case of known enormous contamination, however, 
the situation becomes difficult to handle, as Cr(VI) 
at high concentrations may be more stable and much 
more mobile. 

Once Cr is a part of contamination in many produc-
tion fields, it is transported in the soil-water system 
and also by atmospheric deposition. The need for the 
most accurate determination of possible toxic effects 
is therefore very strong. The most difficult task in 
studying the Cr speciation is to most accurately simu-
late and describe the influence of the environment in 
which it is present. Previous findings suggest that 
there is still a large field for application studies as to 
optimize the storage, methodology for pretreatment 
to increase reliability of Cr(III)/Cr(VI) separation and 
sensitivity of analytical instruments. 
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