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IntroductIon

Crop yield is a result of different occurrences during 
the entire plant growth process and can also be depen-
dent on crop growth variability. B e g u e  et al. (2008) 
noted that crop growth variability is related to multiple 
factors that can be time-independent (i.e. topography, 
soil type and depth) or time-dependent. Annually linked 
factors may include anomalies in planting, emergence, 
or weather conditions. Seasonally linked factors can 
include plant diseases, weed development, severe 
climatic events or irrigation system malfunctions. 
These time-independent and time-variable factors can 
also interact, leading to complex spatiotemporal crop 
vigour patterns (M a c h a d o  et al., 2002).

Topography was an obvious cause of variation in 
field crops (G o d w i n ,  M i l l e r ,  2003) and water 
is the most limiting factor in agriculture. The spatial 
distribution of water on a field is influenced by lateral 

flow and is thus controlled in part by differences in 
elevation. S c h m i d t ,  P e r s s o n  (2003) examined 
three methods of deriving potential flow accumulation 
from digital elevation models (DEM). Their results 
indicated that the topographic wetness index (TWI) 
can be used to assess the potential soil moisture pat-
tern on a field and changes in soil texture caused by 
erosion processes.

Solar energy is an important fundamental to pho-
tosynthesis and evapotranspiration (W o o d w e l l , 
1967), and crop growth models (H a n s e n , 1999). 
Only solar radiation in the 0.4–0.7 μm wavelength 
interval supports photosynthesis in green plants. This 
spectral region is referred to as photosynthetically 
active radiation (PAR) (D a u g h t r y  et al., 1992).

Numerous methods can be used to monitor yield 
variability and topographic impact on yield, including 
ground-based sampling, tractor-mounted sampling, 
remote sensing from helicopters and aircraft, and 
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satellite remote sensing (J o n e s ,  Va u g h a n , 2010). 
Satellite remote sensing systems not only cover large 
surface areas but can also repeatedly view the same 
target area. Existing literature refers to monitoring 
the spatial variability of yields via Landsat images for 
crops in different scenarios, such as cotton yields in a 
50-ha field (G u o  et al., 2012), maize and soybeans 
in a 100 × 50 km area (D o r a i s w a m y  et al., 2004) 
and different species in two Landsat scenes (J u l i e n 
et al., 2011). 

Spectral vegetation indices have been widely shown 
to vary not only with the seasonal variability of green 
foliage but also across space, thus making them suitable 
for detecting within-field spatial variability. J a m a l i 
et al. (2015) noted that the temporal trend analysis of 
the Normalised Difference Vegetation Index (NDVI) 
was particularly useful in monitoring and character-
ising the response of land cover to phenomena with 
time scales ranging from seasonal variabilities of 
plant phenology caused by changes in temperature 
and rainfall regimes (H e u m a n n  et al., 2007) to 
gradual inter-annual climate changes (J a c q u i n  et al., 
2010). Less frequently mentioned vegetation indices 
in existing literature include the Green Normalised 
Vegetation Index (GNDVI) (N i g o n  et al., 2014), the 
Moisture Stress Index (MSI) (D u p i g n y - G i r o u x , 
L e w i s , 1999), the Chlorophyll Vegetation Index 
(CVI) (V i n c i n i  et al., 2008), and the Optimised Soil 
Adjusted Vegetation Index (OSAVI) (H a b o u d a n e 
et al., 2002).

The major goal of this study is to discuss the pos-
sibilities of evaluating yield variability with the aid 
of selected vegetation indices (VI) computed dur-
ing the growth of winter wheat (2005, 2011, 2013) 
and oats (2006, 2010, 2014). The study also seeks to 
evaluate the relationships between VI, TWI, yield, and 
the meteorological data (precipitation, temperature, 
global solar radiation, and PAR) obtained for the given 
growth stages.

MaterIal and Methods

Experimental data for this study were obtained 
from an 11.5-ha experimental field in Prague-Ruzyne 
(50°05´N; 14°17´30˝E), the Czech Republic. Most 
of the field has a southern aspect with an elevation 
ranging from 338.5 to 357.5 m a.s.l. and the average 
slope is 6%. The soil of this experimental plot can be 
classified as Haplic Luvisol. The average precipitation 
is 526 mm per year, and the average temperature is 
7.9°C. Total monthly precipitation, temperature, global 
solar radiation (GSR) and PAR data for this area were 
provided by local agro meteorology station; the data 
are presented in Fig. 1a, b.

Conventional arable soil tillage technology based 
on 0.25 m ploughing and fixed crop rotation was ap-
plied in this field. 

The yields of this field have been measured 
since 2003. A combine harvester equipped with  

Fig. 1. Graphs of precipitations and 
temperatures (a), and global solar 
radiation and photosynthetically ac-
tive radiation (b) at different growth 
stages by BBCH scale recorded in the 
experimental field for winter wheat in 
2005, 2011, 2013, and for oat in 2006, 
2010, and 2014

(a)

(b)
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a LH 500 yield monitor (LH Agro, Denmark) and a 
DGPS (Differential Global Positioning System) receiver 
with EGNOS (European Geostationary Navigation 
Overlay Service) correction was used. The precision 
of the equipment was ± 0.1 to 0.3 m horizontally and 
± 0.2 to 0.6 m vertically. Because of the large amount 
of data points for every year studied (more than 8000), 

the Method of Moments (MoM) was used to compute 
the experimental variograms. Weighted Least Squares 
approximation in GS+ (Gamma Design Software,  
St. Painwell, USA) was used. Only yield data from 
2005, 2006, 2010, 2011 and 2014 were used (see Fig. 
2); the 2013 yield data were not measured because of 
a sudden failure of the yield monitor. The summary 

Table 1. Summary statistics and method of interpolation used for plant yield (t ha–1) in selected years 2005 and 2011 (winter wheat), 2006, 
2010, 2014 (oat)

Oat yield Winter wheat yield

2006 2010 2014 2005 2011

Count 8 822 9 024 10 129 8 236 7 548

Mean 4.219 2.254 4.414 6.081 7.053

Median 4.287 2.354 4.228 6.318 7.218

Mode 4.973 2.900 0.72 6.485 5.646

Sample variance 0.909 0.726 3.247 1.308 3.814

Standard deviation 0.953 0.852 1.802 1.143 1.953

Minimum 0.989 0.101 0.098 2.075 0.589

Maximum 7.224 4.825 8.994 9.929 13.458

Skewness –0.515 –0.359 0.470 –0.806 –0.141

Method of interpolation Kriging

Method of estimation Method of moments (MoM)

Variogram model Exponential

Distance parameter (r) 23.4 26.0 12.3 32.5 45.3

Approximate range (3 × r) 70.2 78.0 36.9 97.5 135.9

Nugget variance 0.211 0.222 0.886 0.215 1.380

Sill variance 0.655 0.428 3.026 1.285 3.260

Fig. 2. Maps of krigged yield predic-
tions in the experimental field during 
the observed years: 2006 – oats (a), 
2010 – oats (b), 2014 – oats (c), 2005 
– winter wheat (d), and 2011 – winter 
wheat (e).

(b)
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statistics and methods of interpolation used for the 
estimation of crop yields in the selected years are 
shown in Table 1.

The topographic data were obtained by using LiDAR 
(Light Detection and Ranging) data graciously pro-
vided by the Czech Office for Surveying, Mapping 
and Cadastre. B r a z d i l  (2012) guaranteed an average 
error of elevation as determined by the digital terrain 
model of the Czech Republic 4th generation (DTM 4G) 
of 0.13 m on arable land without vegetation; this was 
the case for our experimental field.

Elevation data were interpolated by inverse dis-
tance weighting (IDW) as an alternative to kriging 
in ArcGIS 10.3.1 to create a digital elevation model 
(DEM). The detailed description of the interpolation 
has been reported by K u m h a l o v a  et al. (2011).  
A slope model (SM) and a flow accumulation model 
(FAM) were then derived from the DEM-D8 algo-
rithm. K u m h a l o v a  et al. (2014) noted that TWI 
can be a good alternative to FAM from D8 or MFD8 
algorithm. TWI was therefore used to describe water 
distribution on the field. TWI uses SM and FAM 
raster data as inputs, based on the concept that low-
gradient areas will gather water (high TWI values), 
whereas steep convex areas will shed water (low 
TWI values). TWI values are non-dimensional rela-
tive indices and vary by landscape type and DEM 
(see Fig. 3a). All topography models were created 
in ArcGIS 10.3.1 software.

Global solar radiation (GSR) was calculated with 
the help of the solar radiation analysis tool of the 
ArcGIS software. DEM calculated from the LiDAR 
data were selected as the input raster. The intervals 
from BBCH 20 to the date of image acquisition were 
selected for multi-day configurations. The resulting 
rasters from all periods were spatially very similar 
and varied only fractionally by the value of radiation 
in WH m–2. The GSR raster from BBCH 20 to BBCH 
37 (the date of image acquisition April 4, 2011) was 
used for visualisation purposes only (see Fig. 3b).

For this study, a set of fifteen cloud-free images  
(14 Landsat images and one EO-1 image) were provided 
by the USGS (http://glovis.usgs.gov) (Table 2). The 
images were acquired at a 30-m resolution.

The Fast Line-of-Sight Atmospheric Analysis of 
Hypercubes was used for atmospheric correction (e.g., 
L i  et al. 2014). All image pre-processing was imple-
mented with ENVI software (version 5.1; Excelis, 
Inc., McLean, USA).

The selected vegetation indices (CVI, GNDVI, MSI, 
NDVI, and OSAVI) were computed for every image 
with ENVI software. Table 3 shows a summary of the 
indices evaluated in this study. All images were then 
exported into ArcGIS software. The yield, TWI and 
solar radiation raster datasets were resampled by chang-
ing the cell size according to satellite image outputs 
to 30 m. There were only 110 pixels on the 11.5-ha 
experimental field area after the resampling process. 
All rasters were processed by using the Extract Multi 
Values to Point Tool (Spatial Analyst Tool, ArcGIS 
software, version 10.3.1; ESRI, Redlands, USA). 
This tool extracts cell values at locations specified 
in a point feature class from one or more rasters and 
records the values to the attribute table of the point 
feature class. Data from the attribute table were then 
exported to STATISTICA 12 software (StatSoft Inc., 
Tulsa, USA) for data analysis.

Table 2. Available Landsat and EO-1 images of the study site for the selected terms

Image date Type of satellite Type of sensor Image date Type of satellite Type of sensor

Winter wheat Oat

16/04/2005 Landsat 5 TM 13/06/2006 Landsat 5 TM

02/05/2005 Landsat 5 TM 22/05/2006 EO-1 ALI

03/06/2005 Landsat 5 TM 08/06/2010 Landsat 5 TM

04/06/2011 Landsat 7 ETM+ 17/06/2010 Landsat 5 TM

19/05/2011 Landsat 7 ETM+ 19/06/2014 Landsat 8 OLI

24/04/2011 Landsat 7 ETM+ 28/06/2014 Landsat 8 OLI

26/05/2011 Landsat 7 ETM+

15/05/2013 Landsat 8 OLI

16/06/2013 Landsat 8 OLI

Fig. 3. Topography Wetness Index model map in the experimental field 
(a) and Global Solar Radiation from the period from BBCH 20 to June 
4, 2011 (the date of image acquisition) (b)

(b)(a)
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results

Correlation matrices between the yield, TWI, global 
solar radiation, and vegetation indices in the given 
terms and years are shown in Table 4.

Oat crops were monitored in 2006, 2010, and 2014. 
The mean yield value reached 4.219 t ha–1 in 2006 
(Table 1). High average temperature (14.1°C) at the 
early developmental phases of the oat plants caused 
fast tilling and an early enclosure of the crops. This 
corresponds to higher values of vegetation indices 
OSAVI (0.906) and CVI (9.475). Precipitation in May 
secured an optimal water supply. This corresponds to 
a significantly low MSI index value on May 22, 2006 
(0.042). Plants in this growing phase had optimal con-
ditions for rapid development. However, due to warm 
and dry conditions, the first half of June caused a local 
increase in plant water stress, which corresponds to an 
increased MSI index (0.351) on June 13, 2006. Lack 
of precipitation in the period BBCH 30–59 caused an 
increase in plant water stress and thus increased the 
influence of topography on the yield. The concentra-
tion of higher yield values in the area of accumulative 
depressions (concave areas) is apparent in Fig. 3a.

Very low yields (2.254 t ha–1) were measured 
in 2010 compared to other seasons (Table 1). This 
year was characterised by even rainfall distribution 
(Fig. 1a). A colder than normal spring decelerated 
the development of plants in their early phenological 
phases. Subsequent increases in temperature brought 
improvement. This corresponded to higher correlation 
values between NVDI and GNDVI indices and yield 
(0.481/0.520) in both monitored periods (Table 4). 
Conversely, the impact of topography was less sig-
nificant due to the sufficient water supply. The MSI 
index in both monitored periods reached low values  
(0.268 and 0.254), and the GSR (1483.2 MJ m–2) and 
PAR (501.2 MJ m–2) values were the lowest of the entire 
monitored period. The entire season was influenced 

by short periods of sunshine, heavy clouds and higher 
precipitation levels; this negatively influenced yield 
values. The oat crops were fully enclosed in either of 
the later phenological phases (after BBCH 60). When 
compared to other seasons, the yield reduction was 
also caused by excess precipitation in the period after 
BBCH 60. Heavy rainfall during the ripening season 
caused crop lodging on some parts of the field and 
thus reduced yield. The impact of topography cannot 
be positively determined from the yield map shown 
in Fig. 2b.

The last monitored oat-growing season was 2014, in 
which the mean yield reached 4.414 t ha–1. Data indicate 
a more significant impact of topography on yield compo-
nents than in the previous years (Fig. 2c). The degree of 
tilling was low and number of plants per m2 was lower 
than in previous years, particularly in convex field areas. 
This was caused by a lack of precipitation (Fig. 1a) in 
the early phenological phases (BBCH 20–29). The plants 
thrived during this period, as indicated by the vegetation 
index values, and this deficit was compensated in later 
phenological phases. The 2014 season also confirmed the 
positive influence of higher GSR (2881.4 MJ m–2) and 
PAR (735.2 MJ m–2) values. Sunny weather had slightly 
increased the MSI values (0.364 – June 28, 2014), but 
water stress did not reach a level that would negatively 
affect yield components.

Wheat crops were monitored in 2005, 2011, and 
2013. The yield mean value reached 6.81 t ha–1 (Table 1)  
in 2005. Even rainfall distribution was registered 
through all phenological phases in 2005, although 
precipitation, in spite of the evenness, reached the 
lowest total amount (127.2 mm) for the three monitored 
seasons. Lower CVI values (5.057) and to a lesser 
extent NVDI (0.681) and GNDVI (0.673) values, can 
be attributed to a slight short-term drought at the end 
of April 2005. This corresponds to an increased MSI 
(0.464). The MSI values significantly decreased in later 
phases (0.294 – May 2, 2005; 0.166 – June 3, 2005)  

Table 3. Summary of the indices evaluated in this study

Index Name Formula Developed for Developed by

CVI Chlorophyll Vegetation Index
leaf chlorophyll  

content
V i n c i n i  et al. (2008)

GNDVI
Green normalised  
vegetation index

chlorophyll G i t e l s o n  et al. (1996)

MSI Moisture stress index leaf water content R o c k  et al. (1985)

NDVI
Normalised difference  

vegetation index
structure R o u s e  et al. (1974)

OSAVI
Optimized Soil Adjusted  

Vegetation Index
canopy structure  

with soil influence
R o n d e a u x et al. (1996)

RG, RNIR, RMidIR, RR are the reflectances for green, red, middle IR and NIR bands, respectively

 

= (RNIR – RG)/(RNIR + RG) 

 

= (RNIR – RR)/(RNIR + RR) 
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and later phenological phases (after BBCH 60) when 
the wheat crops were well and evenly supplied by 
water. The yield in individual parts of the field was 
less influenced by topography (Fig. 2d) than in 2011 
(Fig. 2e).

The yield mean value reached 7.053 t ha–1 in 2011. 
The impact of terrain topography on yield was greater 
than in 2005 due to deficient precipitation in the BBCH 
30–59 growing phase. Tillering was reduced and slowed 
during spring; this corresponds to the OSAVI index 

Table 4. Correlation coefficients (r) between various remote sensing indices and oat yields, TWI and GSR

Date Yield TWI GSR Date Yield TWI GSR Date Yield TWI GSR

Year 2006 2010 2014

Yield 1 0.497*** –0.432*** 1 0.449*** –0.099 1 0.002 0.112

TWI 0.497*** 1 –0.169 0.449*** 1 –0.172 0.002 1 –0.170

NDVI
22.5. 0.637*** 0.326*** 0.056 8.6. 0.481*** 0.430*** 0.042 19.6. 0.014 0.366*** 0.268**

13.6. 0.665*** 0.509*** –0.044 17.6. 0.520*** 0.499*** –0.041 28.6. 0.173 0.529*** –0.128

GNDVI
22.5. 0.568*** 0.282** 0.038 8.6. 0.453*** 0.421*** 0.018 19.6. 0.028 0.305** 0.349***

13.6. 0.672*** 0.503*** –0.035 17.6. 0.555*** 0.503*** –0.112 28.6. 0.190* 0.496*** –0.090

MSI
22.5. 0.421*** 0.441*** –0.015 8.6. –0.468*** –0.475*** 0.032 19.6. –0.062 –0.587*** –0.035

13.6. –0.627*** –0.515*** 0.034 17.6. –0.463*** –0.503*** 0.078 28.6. –0.132 –0.639*** 0.207*

CVI
22.5. 0.296** 0.113 0.303** 8.6. 0.117 0.121 –0.077 19.6. 0.124 0.129 0.519***

13.6. 0.375*** 0.277** –0.030 17.6. 0.347*** 0.242* –0.226* 28.6. 0.196* 0.430*** –0.050

OSAVI
22.5. 0.595*** 0.304** –0.012 8.6. 0.481*** 0.430*** 0.042 19.6. 0.014 0.366*** 0.268**

13.6. 0.665*** 0.509*** –0.044 17.6. 0.520*** 0.499*** –0.041 28.6. 0.173 0.529*** –0.128

Year 2005 2011 2013

Yield 1 0.107 0.367*** 1 0.579*** –0.380** – –

TWI 0.107 1 –0.162 0.579*** 1 –0.162 1 0.003

NDVI

16.4. 0.543*** 0.263** 0.182 24.4. 0.506*** 0.336*** 0.118 15.5. 0.406*** –0.004

2.5. 0.606*** 0.130 0.559*** 19.5. 0.760*** 0.481*** –0.457*** 16.6. 0.371*** –0.211*

3.6. 0.619*** 0.376*** –0.005 26.5. 0.840*** 0.570*** –0.569***

4.6. 0.724*** 0.446*** –0.737***

GNDVI

16.4. 0.480*** 0.295** 0.212* 24.4. 0.522*** 0.369*** 0.147 15.5. 0.410*** 0.000

2.5. 0.519*** 0.123 0.505*** 19.5. 0.741*** 0.487*** –0.370*** 16.6. 0.356*** –0.273**

3.6. 0.699*** 0.292** 0.223* 26.5. 0.774*** 0.560*** –0.521***

4.6. 0.692*** 0.403*** –0.767***

MSI

16.4. –0.448*** –0.058 –0.537*** 24.4. –0.093 –0.107 –0.419*** 15.5. –0.425*** –0.006

2.5. –0.591*** –0.126 –0.559*** 19.5. –0.684*** –0.522*** 0.285** 16.6. –0.470*** 0.085

3.6. –0.707*** –0.365*** –0.208* 26.5. –0.792*** –0.619*** 0.430***

4.6. –0.785*** –0.533*** 0.631***

CVI

16.4. 0.239* 0.168 0.167 24.4. 0.288** 0.229* 0.117 15.5. –0.074 0.288**

2.5. 0.219* 0.051 0.252** 19.5. 0.508*** 0.351*** –0.236* 16.6. 0.290** –0.446***

3.6. 0.399*** 0.013 0.396*** 26.5. 0.392*** 0.375*** –0.287**

4.6. 0.562*** 0.267** –0.708***

OSAVI

16.4. 0.544*** 0.263** 0.182 24.4. 0.506*** 0.336*** 0.118 15.5. 0.406*** –0.004

2.5. 0.606*** 0.129 0.559*** 19.5. 0.761*** 0.482*** –0.457*** 16.6. 0.371*** –0.211*

3.6. 0.619*** 0.376*** –0.005 26.5. 0.839*** 0.570*** –0.569***

4.6. 0.724*** 0.446*** –0.737***

GSR = Global solar radiation, TWI = Topography wetness index, NDVI = Normalised difference vegetation index, GNDVI = Green NDVI, MSI 

= Moisture stress index, CVI = Chlorophyll vegetation index, OSAVI = Optimized soil adjusted vegetation index 

levels of statistical significance: *P < 0.05; **P < 0.01; ***P < 0.001
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value (0.872 – April 24, 2011), particularly in the 
early monitored terms. The MSI index was also higher 
(0.364 – April 24, 2011). Stem elongation was due to 
a lack of precipitation, and this phase took longer than 
usual. The amount of precipitation in the period after 
BBCH 60 was the highest (257.4 mm) of the entire 
monitored period. This also explains the very low MSI 
values (0.229 – May 26, 2011; 0.123 – June 4, 2011)  
in later phases. However, there were clear high correla-
tion values between the NDVI (0.724 – June 4, 2011)  
and GNDVI (0.692 – June 4, 2011) indices and the 
yield, which indicates proper water and nutrition sup-
plies in later phenological phases (after BBCH 60 
– see Table 4). The GSR (2609.6 MJ m–2) and PAR 
(871.3 MJ m–2) values were the lowest of the three 
monitored seasons of winter wheat crops (Fig. 1b). In 
particular, the ripening of wheat was slower than in 
the previous years. This also confirms the yield map 
shown in Fig. 2e.

The spatial yield pattern was not measured in 2013. 
A weighing of hauling means determined the yield 
mean to be 7.54 t ha–1. This year was characterised 
by wet periods in spring and during the wheat ripen-
ing season. This was verified by high CVI values  
(12.095 – June 16, 2013). Plant growth was longer, 
and the plants still had high chlorophyll contents in the 
middle of June. The crops were well tillered and joined, 
as shown by the OSAVI values (1.094 – May 15, 2013;  
1.026 – June 16, 2013). There was an apparent influ-
ence of high average temperature (20.1°C) and of the 
GSR and PAR values (Fig. 1) in later growing phases 
(after BBCH 60). In spite of high total precipitation, 
this caused a slight increase in MSI values (0.319  
–June 16, 2013) in later periods when the top soil lay-
ers had locally dried. This increase, however, had no 
significant influence on the major yield components, 
which was verified by very high CVI values (6.598 
– May 15, 2013; 12.095 – June 16, 2013).

dIscussIon 

Studies on crop within-field variability are based 
on different data sources, crops, and evaluation in 
existing literature. This study made on our experi-
mental field showed that remote sensing tools can aid 
in determining the places that accumulate water and 
where plants are in the best condition all year round. 
B e g u e  et al. (2008) found the same results in their 
research with sugarcane, and showed through an ex-
ample using satellite remote sensing how cropping and 
environmental factors impact within-field temporal 
variability. Their results with sugarcane showed that it 
is necessary to determine crop phenology to correctly 
interpret the spatial pattern. 

The use of satellite images can provide temporal 
information about the phenological state of the veg-
etation. Results indicated that a spatial resolution of 

30 m for Landsat and EO-1 images is useful in deter-
mining temporal information on phenological states 
and plant conditions. Many studies have used Landsat 
images with a 30-m spatial resolution to evaluate dif-
ferent crops or landscape elements of different sizes. 
C h a o  R o d r i g u e z  et al. (2014) used Landsat im-
age time series to study a small water body (11.5 ha) 
in Northern Spain and found that Landsat historical 
archives may still provide a wealth of environmental 
information. Landsat data has also been used by other 
authors on larger fields. J u l i e n  et al. (2011) used 
Landsat imagery for land use classification in a large 
agriculture area in Barrax (Spain); G u o  et al. (2012) 
evaluated the spatial variability of cotton yields in 
a 50-ha field in relation to soil-apparent electrical 
conductivity, topography, and bare soil brightness 
based on remote sensing images (Landsat 5 TM) over 
multiple growing seasons.

Applications of vegetation indices have ranged from 
leaf to global levels. Most vegetation indices tend to 
be species specific and are thus not robust when ap-
plied across different species with different canopy 
architectures and leaf structures (V i n a  et al., 2011). 
In this research, we selected traditional vegetation 
indices that have been typically used in other studies 
to evaluate plant and yield variability. Most authors 
used either specific vegetation indices for selected 
problems, e.g. N i g o n  et al. (2014), or traditional 
vegetation indices for evaluating crop canopies.

We also found that it was necessary to have as 
many satellite images and vegetation indices as pos-
sible throughout the relevant phenological stages to 
properly estimate the yield components. This was also 
confirmed by Ya n g ,  E v e r i t t  (2002), who studied 
the dynamics of spectral vegetation indices to deter-
mine the best period to delineate potential yield zones.

Topography is one of the most important factors 
and can play a crucial role, particularly in dry years 
(K u m h a l o v a  et al., 2014). In the previous research 
(K u m h a l o v a  et al., 2011), the influence of topog-
raphy on yield variability and the production potential 
of an experimental field were evaluated. We found that 
our results with small-grain crops corresponded well 
with those of other studies (M a r q u e s  d a  S i l v a , 
S i l v a , 2008) using different crops under different 
climatic conditions. In addition, we discovered that 
the influence of topography on plant variability dur-
ing the growing season can be estimated with the help 
of remote sensing tools. This was also confirmed by 
G u o  et al. (2012), who reported that cotton yields 
had a stronger correlation with selected topography 
attributes in dry growing seasons than in wet growing 
seasons and that cotton yield variability patterns were 
relatively stable across different growing seasons. 
They used Landsat-5 TM images to evaluate crop 
yield variability and found that the NIR band may be 
the best choice for representing soil brightness when 
predicting crop yield variability. Their study showed 



134 Scientia agriculturae bohemica, 49, 2018 (2): 127–135

that remote sensing can be used for yield variability 
description.

conclusIon

The results presented in this article show a con-
nection between the vegetation indices, phenophases, 
final yields, and TWIs that characterise topographic 
field conditions. The results showed that satellite 
images with a spatial resolution of 30 m were useful 
when evaluating an 11.5-ha field. The advantage of 
this processing method is an easy access to data inputs. 
Conversely, the disadvantage is a limited selection of 
images convenient for evaluation due to poor mete-
orological conditions during imagery.

Predicting the yield components based on analys-
ing the growth state determined via remote sensing 
constitutes an interesting analysis tool. These analy-
ses can be applied in advanced systems of precision 
agriculture and can serve as an element of managed 
agriculture, particularly on large land blocks or in 
agricultural services. In looking ahead, we can expect 
a further extension of growth imagery and an expan-
sion of indexing to other field crops.

It will be necessary to determine other links between 
vegetation indices and crop parameters, as well as to 
further determine appropriate correlations between 
these parameters.
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