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To deal with imprecision and risk, the concepts and techniques of fuzzy sets
are employed. They are successful in managerial decision making, in artificial
intelligence and expert systems and many other fields of solving of ill-struc-
tured problems. They, unlike confusing stochastic models, provide the best
ways to communicate with experts and fuzzy possibilistic programming tech-
niques are considered to be more efficient and meaningful. The risk of the
acceptable solution can be expressed by means of (i) probability, (ii) subjective
probability, (iii) fuzzy measure. Both cases (i), (ii) use stochastic linear pro-
gramming. To express risk by means of fuzzy measure, fuzzy linear program-
ming model is used and the risk of considered solution is expressed on a degree
scale 0, 1). Basic computational procedures are illustrated using the model of
a farm.

fuzzy decision making; fuzzy linear programming; possibilistic programming;
stochastic programming; risk of the acceptable solution; measure of the risk:
decision support systems

INTRODUCTION

~ Describing complex real-world systems into precise mathematical models
18 the main trend in contemporary science and engineering. Real world situ-
ations are often not deterministic and thus deterministic mathematical models
&€ not enough (o tackle all practical problems. To deal with imprecision and
Uncertainty, the concepts of probability theory were usually employed. Prac-
lica] €xperience proved that the probability mathematical models can be re-
Placed by fuzzy mathematical models which represent better the individual
perience, Fuzzy approach can substitute well subjective probability by
mez.ms of fuzzy measure and enables use the simpler mathematical procedures
4ting computation process.
: il t.he 1960, meanings of the probability theory have been reconsidered
‘\ Criticised when modelling problems in artificial intelligence and ill-struc-
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3‘ tured problems of management decision making. About the same time as the Specil’icily of the problem. The functional forms of b :
| development of chaos theory, fuzzy set theory was developed in 1965 by 1, ossibility distributions are depic Ak LORS of membership functions and
| A. Zadeh and since then, fuzzy set theory and concepts have been used t(; fning problems in Fi“u}e; l ;rclgl;tefl V‘lor‘d.lﬁercm fypet vl e JEEtim..
” solve important real world problems including production, manufacturipg : FES RIS o
“\ transportation, assignment, game, environmental management, water res -
‘\ ces management, nutrition management, personnel management, logisti
W accounting, banking, finance, marketing management, trade balance an
\‘ ricultural economics. It should be noted that all concepts and methods are
\‘ developed for solving practical problems (Hwang, 1978).
In the last 30 years, the fuzzy set techniques have been applied in many ;
I disciplines: operation research, management science, expert Systems, contro| _bi g
| theory, etc. Both techniques and application were systematically discussed, > %
I Since 1980s, the possibility theory has become more and more important in
h the fields of applied management science and impacts on the extension of
Wi possibilistic mathematical programming. In operation research and system
il analysis, fuzzy set theory has been applied to techniques of linear and non-
L linear programming, dynamic programming, queuing theory, multiple criteria
\‘ decision making, group decision making and building effective intelligent
H decision support systems within the analysis of soft systems.
H Fuzzy set theory is a theory of graded concepts and not a theory of chance.
| Therefore, figures and numerical tables are considered paramount in the study
\‘ ‘ and they (unlike mathematical difficulties) provide the best ways to commu-
nicate with non mathematics and non computing people and experts. This is 0
\ a new important concept in decision support systems. a,-j,bj,g : e
&5, 05,C

| ‘ bbaﬂ*’

z

_The membership functions for differe : i
I p functions for different types of restricting conditions and objective functions

. s . 2. The possibili ot : ;
Concepts in fuzzy linear programming possibility distribution functions used to describe the fuzzy numbers in LP model
iz IS ode

U SYmAbolically, the general linear programming problem may be stated as: With these fuzzy impute data, equations (2.1), (2
s o iuizgfégo;;sgbélistic‘%P progrilmming. Fuzzy imput.c (izl(ta.zA) :m(ca,:)mll: :"(]};l)d
/pogsi{])ilislic ]e]l:lztlc] pz()?;[ﬁj;ﬁi);lﬁ = (b)), ¢ = (¢)), respectively. General l‘uzzy/‘
5 @ ¢ problem may be stated as: maximise
22 2=Cx
Subject to conditions —

| z=¢X

| . 5

| subject to conditions
I Ax<b, x>0

‘U ‘ The matrix A = (i) is the matrix of technical coefficients, the vector b\; L
| (bi) is the vector of right-hand sides, the vector ¢ = (cij) represents ihj °Osbe =0, x>0 .
. e o] _ 1\ are considered 0 T , (2.4)
of decision/slack variables x = (x}). All data {ajj, bi, cj} are considere ~ The orade of - o o gt
| i ij» iy Cj grade of a membership function indicates a subjective degree of sat
g sat-

I8fact; it s .
~action within given toler

{“ deterministic in the classic LP problem. :
llity indicates h

il These impute data {A, b, ¢} can be fuzzy (imprecise) because of 1 o
I plete or non-obtainable information. To formulate these as fuzzy nl;'f;la of
I we can use membership functions or possibility distribution depen =

. rances and, on the other hand, the grade of possi-
C S ~ ~ - 10t o N
N u :]BLIIVL or o.b\]b‘cllve degree of occurrence of an event
. k., ¢ type of membership function realizes two different conce tj
mathematical programming: i

i 1‘ 4 727/244
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i) Fuzzy linear programming

Fuzzy programming problems associate fuzzy impute data which shoy|q
be modelled by subjective preference-based membership functions.

Fig. 1 illustrates different cases of the preference membership functiop,
When the constraints of the problem (2.4) Ax<b are (at least \mé
a;€ A, bie b is a fuzzy number), the corresponding rational preference.
-based membership function can be assumed to be non-increasing. And
larly, non-decreasing functions of the problem (2.3), (2.4) can be ass
for the case Ax>b. In case of equality constraints, triangular or trapezojq
functions might be appropriate. For the maximisation problem, the membey.
ship function of ¢ can be assumed to be non-decreasing for Ax 25 (or nop.
increasing for Ax <b for the minimisation).

The most recent literature surveys of fuzzy LP are works of Zimmer-
mann (1978, 1983, 1985), Lai, Hwang (1992a, b), Luhamdjula
(1989) and Slowinski (1986).

Simj-

(ii) Possibilistic linear programming

Possibilistic linear programming will associate with imprecise data which
should be modelled by possibility distributions. The possibility distributions
are an analogue of the probability distributions and can be either subjective
or objective. Fig. 2 describes the possibility distributions of A, b, ¢ for possi-
bilistic linear programming which are often assumed to be triangular or trape-
zoid functions.

Possibilistic programming has been used since late 1970s. The pioneer
works were done by Ramik, Rimanek (1985), Tanaka ( 1984),
Dubois (1987), Lai (1992), Hanuscheck, Wo 1f (1989), etc. Since
Zadeh (1978) there has been much research on the possibility theory. Pos-
sibilistic decision making models have provided an important aspect in han-
dling practical decision making problems. Unlike stochastic linear
programming possibilistic linear programmiag provide more computational

efficiency and is more flexible to use. The possibility measure of an event
might be interpreted as the possibility degree of its occurrence under a posT
sibility distribution I'(x) analogous to a probability distribution in tochasti®

linear programming p(x). |
N S g s . . . -~ G -oC1Se
In possibilistic linear programming imputes {A,b,c} may be H”wa]
with possibilistic distributions where aij, by, ¢ij are L-R fuzzy numbers.

though there are many different expressions for the L—R fuzzy numbers (o
angular, trapezoid, linear and nonlinear functions), we can use ‘chl
expression a;j = (m, n, d, B) , where m is the left main value and 7 18 [:]Z
right main value with complete membership, o is the left spread a g pist
right spread (see Fig. 3).
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3. Possibility distribution L-R fuzzy numbers (by Lai and Hwang): trapezoid linear function

After rangipg the problem is transformed to the cris
problem: maximise cx subject to

p linear programming

X mip; < pi

X (mij— dij) . x; < pi — T

L i < gi

L (mij+By) . x; < qi + 8

=0

Here p;, i T, i are parameters of ranging
of the possibilistic line
of standard simplex m

f rar process. The optimal solution
ar programming is unique and is obtained by means
b ethod (Lai, Hwang, 1992b). ‘
B Ceor:1 we are solving the stochastic programming problem, the basic idea
. vert the r‘andom nature of the problem into
ln Situation. After steps performing this ide
€ar model. Obviously,
Possibilistic progr
Mprecise nagure

an equivalent determi-
per a we obtain deterministic non-
1y, 1t 1s not easy to solve it. On the other hand
amming provides more efficient techniques to solve thé
Biices o (;,f A,‘ b, c and also preserves the original linear model.
flexipy. i ership functions anq possibility distributions provide more

b meanmgful.representatlon of imprecision and uncertainty.
™ l\folve reql applic
Powe, also non-linear
» hyperbolic

f ations with real decision makers it is possible to

 functions, suc.:h as piece-wise linear, exponential,

, artificial, etc., as indicated in Figs. 1 and 2. Of course
. )
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when any of A, b, ¢ is a non-linear function, then equations (2.3), (2.4)

become a non-linear programming problem.

Fuzzy linear models concerning practical applications are large. At the
university we carried out some exercises applied to analysis of a farm pro.
duction programme using fuzzy approach to measure risk of recommendeq
solutions. The methodology appears acceptable in the following areas:

a) In managerial applications, in which there is a high level of uncertainty
and quickly changing conditions. There is mostly the question of semis.
tructured and nonstructured systems and their solutions, where, in a num.
ber of problems, the fuzzy measure of the risk of the solution can alter the
lengthy post-optimisation ,,what-if* analysis.

b) In the area of marketing while evaluating the market opportunities and
deciding about the product series and price policies.

¢) In the production area while creating the fuzzy regulation systems.

Fuzzy linear programming

There are presented the following main different approaches to solving
fuzzy linear programming in the literature:

(i) Nonsymmetric model equivalent to the parametric programming (Ver-
degay, 1982).

(ii) Werner nonsymmetric model with fuzzy objective (Werner, 1987).

(iii) Chanas nonsymmetric model equivalent to the goal programming
(Chanas, 1984).

(iv) Lai an Hwang interactive LP (Lai, Hwang, 1992¢c).

(v) Zimmerman symmetric model equivalent to the goal programming
(Zimmerman, 19706).

Zimmermans’ approach is representative and illustrates well fuzz
cepts in linear programming. It should be noted that this approach is consid-
ered as the first practical method to solve a linear programming problem with
fuzzy constraints and objective.

We shall show now how to use Verdegay nonsymmetric model to measure
the risk of decision making when using linear programming model with fuzzy
right sides in constraints. The risk is usually measured in the Bayesian sense-

Let us assume we have to select a variant of solution so as (o be in the
position to modify the risk of the decision. This demand determines a fuzzy

77y con-

set M = {Solution with risk}, which is defined upon a set of feasible solutions
of the problem. ]
If there is at least one parameter of a linear programming model a w[]fayt
t

number, the objective function is a fuzzy number, too. This means,

a given objective function value can be reached with a certain degre®
44
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membeljship function which, at the same time, can be considered as measure
of the risk related to the corresponding solution.
In v1ew‘01‘ the lm_earity requirement for all the considered functions the
rocedurg is rathcr simple. Let us assume that restrictions of the right hand
side bj of a lm;ar programming problem are vague and expressed as fuzzy
numbél‘s- S.oluthn of such problem can be obtained through RHS ranging
The right side of the i-th constraint is than equivalent to expression - .
bi=bi+p.pi
where pi is maximal tolerance of b;, and p € (0, 1).

For the restriction Xa;x; < b; we will consider membership function

I where 2 ajixj < b;
X ajixi — b;
witx) =41 - % where b; < X ajxj < bi + p;
{
0 where 3 s bitpi
1ijXj > bi + p;

Here p(x) = I, if the restriction is satisfied, w(x) € {0, 1), if maximum
Foleran(.:e pi goes gradually down up to zero value, u(x) = 0 if the restriction
is certainly not satisfied. If the tolerance p; is defined, the linear programming
problem can be formulated as follows: :

max {e? XP I S ajpg < bi+ (1 = 1) pi, ;2 0, 4 €(0, 1) 2.5)

The problem (2.5) is a problem of RHS ranging with parameter p = 1 — A
The .Value p is the degree of membership function M = {Solution with risk}.
and is thus the measure of the risk of the chosen solution. If p = 1, than A =
0 and maximal tolerance pi reaches its maximum value, i.e. the s,olution 1s
charged with maximum risk. If than p = 0, than A = 1, the restriction partici‘—

pates in the soluti i alue b; = ion is wi
k- tion with a value b; + Op; = b;, and the solution is without

I sake of L08ts ¢ : op s

n the case of the costs ¢; or technical coefficients a;; defined as fuz

humbers, analogical costs or fici i ‘ -
» analogical costs or coefficients ranging has to be applied.

Solution procedure

Ste g ‘ e
Step ; We formulate a deterministic linear programming model

P 2: We identify restrictions " which ¢ i i
R y ons, the RHS of which can be defined as fuzzy
tep 3. . - L
Ole[:r:]'.Let thg i-th restriction b; is a fuzzy number. We specify the maximum
] u(g ce p;. If we cannot determine it directly from the problem formulation

€ an expert estimation. In this case, experts fix up two points:
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a) Point A which is the most to the right but belongs still to the fuzzy set

with the degree 1. . ‘
b) Point B, which is the most to the right and still belongs to the fuzzy g

with the nonzero. : e
The distance between the two points equals to the maximal tolerance p; 54

shown in Fig. 4.

1 4. Maximal tolerance p; in re
with risk measured in interval (0,
#(x)

Step 4: We carry out the computation using standard si“mple).( algo
values imputed in the first step of the procedure. The final simplex
shown below:

Z Xy s Xy S5, 5 S0 RH
A Bil 8]
Zj— ¢ d; d, .
Where: Z _ set of indices of basic variables
Xj — decision variables
Sk — slack variables
A — matrix of technical coefficients
B — transformation matrix
dj, dv - shadow prices, dual values i
Bie B - coordinates of the basic solution

Step 5: We solve the RHS ranging problem for bi= bi+ ppi i.e. determin®

b = B (bi+ ppiy =B + pB 'pi

- > th the risk of
For p € {0, 1) we obtain the values of the solution vector with the T

degree p(x) = p. - -
Step 6: We carry out the analysis and synthesis of the obtail
(Havlicek, 1992).

1ed Tesults

oM
997 (3 :227
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[llustration by example

We shall follow steps in Solution procedure above:

Step 1. The model of a farm below illustrates the above procedure, its
original formulation is shown in Tab. I. The following activities are included
in the model: 5 types of crop production, 4 categories of cattle raising, sales
of grains and purchases of feed blendings. The constraints 1-5 describe the
use of arable land and the crop rotation, the constraints 6-10 formalise the
palance of nutrients, the constraints 11-15 give the capacity limitations and
cattle reproduction. The four remaining constraints set up limits on purchases
of feed blendings, labour cost and material cost and obligation for sales. The
objective is profit maximisation. Activities and constraints in crop production
are converted per ha, in animal production per breeding unit and piece of
animal, other indicators in kind are expressed in metric tons, those in money
in thousands of Kc (Czech crowns).

Steps 2—4. It can be supposed that the farm has more sources at disposal.
The stock of feed concentrates (see the RHS of the constraint No. 8) may
reach up to 55, i.e. the maximum tolerance pg = 40.

There are 100 Th. of Kc available for increase of labour cost or material
expenditure. The final solution of the model is shown in Tab. II. It follows
from the table that an increase of labour cost may be proper, since its capacity
is fully used in the final solution, while the capacity of material expenditure
is not. The second fuzzy number in the RHS vector will therefore be the RHS
of the constraint no. 17, maximum tolerance p17=100. In the worst situation,
the farm will be in the position to spend 1550 Th. of Kc on labour cost. The
vector-column of maximum tolerances p; is shown in Tab. I on its right
column.

In accordance with the previous text, we shall denote the rate of risk of
the acceptable solution by p. If there are at farm disposal the stock of 15 tons
of feed concentrates and the 1 450 Th. of Kc for labour cost, these values are
forresponding to the rate of risk p = 1 — A = 0. If the farm counted with the
Maximum level of sources, i.c. 55 tons of feed-concentrates and | 550 Th. of
Ke on labour cost, it would run the maximum possible risk, thus p=1 -1 = 1.
€ risk of rate p = 0.5 means, for instance, that the farm relies, in fact, on
the stock of 35 of feed-concentrates and on financial means of 1 500 Th. Kc
On labour cost.
| Stfﬂp 5. To find out, how the optimum solution would react upon the
8IOWing rate of risk , the RHS ranging of the problem along parameter pe
‘of; X was Ce}rried out, see Tabs. 11 2 an‘d II. In agreement with thg 5-th step
Speci? algo_rlthm for various grades 0.1" ‘the parameter P .the solutions were
§ led. The optimal solutions for different values of risk p are presented
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I1. Final simplex table

Al s2 s3 s4 s
B Arable 1. Oats a. S. beet a. Maize a. ge
X1 A. wheat 0.565556 0.501773 —0.84603 -0.18852 Y
X2 Oats 0 -1 0 0 0
X3 S. beet 0 0 1 0
X4 Maize 0 0 0 -1
X5 Per. t.c 0.434444 0.498227 -0.15397 1.188519
X6 Cows -0.12553 0.004768 -0.3542 0.041843 0
X7 Calves -0.10955 0.004161 -0.30912 0.036517
X8 Heifers -0.04483 0.001703 -0.1265 0.014944
X9 Fatt. cattle -0.05096 0.001936 —0.14381 0.016988
X10 Cer. sales 2.604093 -0.09892 -3.15202 -0.86803
X11 P. blend. —15.9582 —14.2455 -33.3807 -24.9028 —66.6667
S5 Per.fca -0.43444 -0.49823 0.153971 —1.18852
S7 Starch -0.1862 -0.03612 2.328275 -1.65127 —4
S9 Blend. -15.8719 —14.2488 -33.1373 -24.9316 -66.6667
S10 Rough. 18.16573 20.41386 39.68468 12.61142
S11 C. cows 0.125528 -0.00477 0.354202 -0.04184 0
S15 C.y. cattle 0.236936 -0.009 0.668563 -0.07898 0
S16 Limit. bl. 15.95818 14.24552 33.38071 24.90283 66.66667
S18 M. cost 48.40616 46.52871 100.8342 83.34239 L \’Wi_
OF Profit 48.40616 46.52871 100.8342 83.34239 Lz 3338

thus there
e of risk

in Tab. III. For p = 0.05 and p = 0.8 the change of basis is needed
are three intervals of the stability of solutions, namely (i) for vz :
p € (0; 0.05), (ii) for p € (0.05; 0.08), (iii) p € (0.8; 1). The values of

activities change more or less along risk parameter p and the ratc of their
change enables a better judgement of the system behaviour around the bor-
derline of stability intervals for the value p € (0; 1). Based on this informa-
tion particular results obtained can be summarised. ,
Step 6. In the optimum solution of the original (not fuzzy) model, Wﬁ‘!ﬁ
ji.e. m

the rate of risk is zero, the feed-blendings are very unbalanced
more blendings are fed than needed). In the first interval of stabil

at very

: . e - crarenct

low values of the rate of risk p, up to 0.05 and with its growth, the differef
044
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L. Final simplex table — continue

E A5 Si2 Al3 Al4 S17 S19
Conc. R. cows B. calves |B. br. cattle iT B

_0.20625 | -0.51367 | -0.16069 | 0.172116| -0.37704 WT,W—

0 0 0 0 0 0 30

0 0 0 0 0 0 30

0 0 0 0 0 0 50

0206253 | 051367 | 0.160688 | -0.17212 | 0.377037| 0.068751 86.87628
_0.00584 | 0.114479| -0.24596 | 0.166629 | 0.083685| —0.00195 56.04269
~0.0051 0.099909 | 0.694437 | 0.145421 | 0.073034 | -0.0017 48.90999
20.00209 | —1.38769 | —0.08784 | 0.05951 | 0.029888 | —0.0007 20.01525
20.00237 | 1747159 | 0765942 | -0.88473 | 0.033976 | -0.00079 2275326

0.121121 | 335222 | -1.31025 | 1.463891| -1.73606 | —0.29296 664.0502
3781 |-23.1391 5708703 | -3.62583 |-12.4723 | -3.03811 115.418
-0.20625 | —0.51367 | ~0.16069 | 0.172116 | —0.37704 | —0.06875 13.12372
-0.27006 | 0.945042| 0.073229 | -0.06888 | 0.137468 | 0.039981 | 100.8549
-3.77699 |-23.2178 5786834 | —3.74035 |-12.5298 | -3.03677 76.90142

8.472824 | 20.61562 5.982161 | —6.09744 15.22285 2.824275| 8804.103
0.005838 | —0.11448 0.245958 | -0.16663 | -0.08369 0.001946 23.95731
0.01102 | —0.08003 | —1.46649 1.209295 | -0.15796 0.003673 4421829
3781001 | 23.13912 | -5.7087 3.625831 | 12.47232 3.038111 4.581962
w9 74.90016 |-21.6111 12.21257 38.21812 9.962886 | 5505.06

12.82199 | 74.90016 |-21.6111 12.21257 | 3721812 8.962886 55.06049

Sharp.ly declines, at the same time the area of perennial fodder-crops is in-
“easing on expense of the winter wheat and the bulk of all activities in
dnimal production is expanding, on the other hand, the sales of cereal are
g;’lllf;%l d(()jWn' ar}d the material expendiu{re is Asinking quickly as well, an
availag] }l/ngumc gro.wth. shows the prollli This means that an increase of
- ade a ou‘r. V\‘/hl‘ch is accom.pamc-d with a growing rate of risk, is the
pOSSib]eva.lnta‘gcou's f(?r the'use in ammal production. This makes it also
Concemr,“ln'gomhmau()n with second l‘uzzy‘ numbe?‘ — the stock of feed —
B ates - to cut down the pl\ll‘Chil:ﬂ‘t':?S. of expensive feed-blendings. It is

O notice that the values of coefficients in the final simplex table are

Tather p,: : : _
- I high, \_)vhlch denotes a high level of sensibility of the optimum solution
ards the impute data.
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11I. Solution of model depending on membership function

|

p 0 0.05 0.1 0.2 03

X1 A. wheat 153.1237 150.826 149.9661 148.5494 147.7@

X2 Oats 30 30 30 30 30

X3 S. beet 80 80 80 80 80

X4 Maize 50 50 50 50

X5 Per. f. c. 86.87628 89.17397 90.03394 91.45059 7

X6 Cows 56.04269 56.44944 56.89689 57.80036 8.70384

X7 Calves 48.90999 49.26497 49.65546 50.44395 71.23244

X8 Heifers 20.01525 20.16051 20.32032 20.64299 20.96566

X9 Fatt. cattle 2275326 229184 23.10007 23.46688 23.83369

X10 Cer. sales 664.0502 655.6122 653.3005 649.9694 646.6384

X11 P. blend. 115.418 45.49442 39.10368 39.72461 40.34555

S2 Oats a. 0 0 0 0 0

S3 8. beeta. 0 0 0 0 0

S4  Maize a. 0 0 0 0 0

S5 Per. f.ca 13.12372 10.82603 9.966058 8.549405 7.132753

S6 Nitrogen 0 0 0 0 0

S7 Starch 100.8549 101.0021 100.3133 98.75919 97.20509

S9 Blend. 76.90142 6.698262 0 0 0

S10 Rough. 8 804.103 | 8897.163 | 8931.162 8 986.7 9 042.239

S11 C. cows 23.95731 23.55056 23.10311 22.19964 21.29616

S12 R. cows 0 0 0 0 0

S15 C.y. cattle 4421829 43.45055 42.60598 40.90065 39.19532

S16 Limit. bl. 4.581962 74.50558 80.89632 80.27539 79.65445

S17 L. cost 0 0 0 0 0

S18 M. cost 5505.06 | 5721795 | 5730.186 | 5703.018 | 567584

S19 Sales 0 0 20.91196 67.14732 _w

OF Profit 55.06049 | 266.7951 291.0981 300.165 309.2319
Solutions with risk: for p = 0 without risk, for p > 0 with risk

The rate of risk p = 0.05 represents the very moment, when the i‘efﬂd'blefld(;
ings become well-balanced. If the risk for the chosen solution <:emtil:;le:i;&
essary s

increase, the feed-blendings will only be used in the minimum nec
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ML Solution of model depending on membership function — continue

0.4 0.5 0.6 0.7 0.8 0.85 0.9 I
145.7161 | 144.2994 | 142.8828 | 141.4661 | 140.0495 140 140 140
30 30 30 30 30 30 30 30
80 80 80 80 80 80 80 80
50 50 50 50 50 50 50 50
94.2839 | 95.70055 | 97.1172 | 98.53386 | 99.95051 100 100 100
59.60732 | 60.5108 | 61.41427 | 62.31775 | 63.22123 | 63.0258 | 62.78175 62.29365
52.02093 | 52.80942 | 53.59791 | 54.3864 | 55.17489 | 55.00433 | 54.79134 54.36536
21.28833 | 21.611 21.93367 | 22.25634 | 22.57901 | 22.50921 | 22.42205 | 22.24773
242005 | 24.56731 | 24.93412 | 25.30093 | 25.66774 | 25.5884 | 25.48931 | 25.29114
643.3074 | 639.9763 | 636.6453 | 633.3142 | 629.9832 | 632.0385 | 634.3733 | 639.0429
40.96648 | 41.58742 | 42.20836 | 42.82929 | 43.45023 | 43.31591 | 43.14818 | 42.81272
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
5716101 | 4.299448 | 2.882796 | 1.466143 | 0.049491 0 0 0
0 0 0 0 0 0 0 0
95.651 94.0969 | 92.5428 | 90.98871 | 89.43461 | 88.85159 | 88.28314 | 87.14624
0 0 0 0 0 0 0 0
9.097.777 | 9 153.316 | 9 208.854 | 9 264.393 |9 319.931 | 9 322.51 |9 323.198 | 9 324.572
2039268 | 19.4892 | 18.58573 | 17.68225 | 16.77877 | 16.9742 17.21825 | 17.70635
0 0 0 0 0 0 0 0
37.48999 | 35.78465 | 34.07932 | 32.37399 | 30.66866 | 31.03754 31.49819 | 32.41949
79.03352 | 78.41258 | 77.79164 | 77.17071 | 76.54977 76.68409 | 76.85182 | 77.18728
3 64(;68] S 67(1) e 592 l 0 0 7.05636 | 14.64278 | 29.81563
5 621.5 5 594.3 5567.175 |5 540.007 | 5 546.809 | 5 555.143 | 5 571.81
311589.:2691888 ;2(2);3;:: i:zz;ﬁ:: 298.3241 | 344.5595 | 338.5624 | 330.3782 | 314.0098
327.36¢ 336.47 345.4995 | 354.5664 | 357.428 | 360.164 | 365.636

At th : S :
Cannstsgme time the situation arises, in which the increasing labour resources
] ¢ used efficiently anymore and remain partly unused. In the third

i .
fterval of stability

when p > 0.8 the change of optimum programme at the
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growing rate of risk is characterised by two substantial"pmcesses: ()
nial crops uses all area of disposal area (100 hu)'an.d (11) the la}vouz COst are
decreasing. This would logically originate, and it is also confirmed by the
computation results, the growth of the bu]lf of sold.cerf‘:als, extension of thg
winter wheat area on expense of area of perennial f()ddg’l:cmp.s; and the
decline of animal production. These tendencies are conn’"adlctory In relatiop
to the first interval of stability and their changes are con‘z‘s‘ld.erably lles,\n: Notice.
able. Also the expenditure is decreasing and the profit Increasing, in thig
interval, much slower, the lower coefficients i{l Tab. II co'nhrm the legg
important influence of eventual modifications of production imputes on the
resulting production. . ‘
The farm can be advised to run a sound risk and choose the rate of rigk
from the second interval of stability, where the profit has alrcad}/ been in-
creased by the important growth from the first mteljval, cvenluaviw‘r‘wu;lm;a.
tions of the original constraints are of a rather small importance. This choice
becomes even more advantageous, if the farm can employ a part of the un-
used means destined to purchases of a higher stock of feed-concentr

peren.

ates.
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HAVLICEK, J. - KUCERA, P. (Ceski zem&dglska univerzita, Provozné ekonomicki
fakulta, Praha, Ceska republika):

Rozhodovani v rizikovém prostiedi zaloZené na fuzzy lineirnim programovani.
Scientia Agric. Bohem., 28, 1997 (3): 227-244.

Aplikace matematickych modeld linearniho programovani (LP) jsou v piipadé
deterministickych vstupnich informaci standardnim nastrojem podpory rozhodovani.
V praktickych aplikacich se asto setkdvame s pfipady, kdy nékteré vstupni informa-
Ce nejsou presné a feSeni je moZno piijmout jen s urcitym rizikem. Miru rizika,
Zpravidla uvazovanou a méfenou v Bayesove smyslu, Ize do modelu zahrnout pomoci
pravdépodobnostni miry nebo fuzzy miry. Fuzzy mira se v matematickych modelech
PouZiva z t&chto diivoda: (i) dobfe vyjadiuje osobni zkugenost a cit pracovnika, (ii)
ze ji snadno nahradit subjektivni pravdépodobnost, (iii) algoritmy pro feSeni modeld
§ fuzzy prvky jsou jednodussi nez v modelech stochastickych. Neur¢itost/nepfesnost
_at ¢ v modelu LP vyjadiuje pomoci fuzzy &isel. Obecng Ize funkci rozdéleni fuzzy
iSla vyjadiit dvéma zpusoby: a) funkei piislu$nosti (obr. 1), nebo b) rozdélenim
MoZnosti (possibility distribution — obr. 2). Pro méfeni rizika je vyhodnéjsi pouZit
funkc; rozdéleni moznosti (tzv. ,.posibilistické* LP pouzivé funkci rozd&leni zobra-
Zefn()u na obr. 3; z obrizku je zfejmd formulace omezujicich podminek posibilistic-
K&ho modely L p),
mOdC;ilelngré,CC hylvq 1/1av.rhno}1l al/gof‘ilmus pro méf’cni ri%ika prijaté vax"ianly Fcﬁel?i
Wazoy Z.s neurutyuml/neprcs.nyn‘n daty. Jnko, ;ak]z\/dm}[yp modc!u nllzzy LP je
movam‘? dlmvmermanuv. symelrlck‘y mocvlcl. klei‘y je hllz.ky mo.dc!u ulov.eho’ prf)g'm:

a dobfe vyhovuje zakladnim poZadavkiim algoritmu: je interaktivni, citlivy

g
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na zménu vstupnich informaci, algoritmicky jednoduchy. Pfi feSeni modelu fuzzy

se vyuZivd znamych postupi pro parametrizaci v LP (RHS ranging).

Zakladni kroky algoritmu:

1. Formulace deterministického modelu LP.

2. Urleni vstupnich dat, kterd jsou neurcitd a budou zadana jako fuzzy g
(v uvedeném algoritmu se uvazuje o hodnotach pravych stran by).

3. Pro kazdé fuzzy Cislo se urdi tzv. maximalni tolerance; pro fuzzy &islo b; je
tolerance p; (obr. 4).

4. Pro zvolené hodnoty tolerance p; se pocitaji varianty feSeni modelu LP algoritme
RHS ranging. Pocet hodnot p; se stanovi tak, aby se varianty FeSeni od set
dostate&né ligily; v uvedeném piikladg bylo stanoveno 13 hodnot pi.

5. Pomoci parametru p; € (0, 1) se pro kazdou variantu urCuje riziko, méfen¢ r
intervalu (0, 1). Hodnota “0" pfedstavuje absolutni riziko, hodnota ,,1" jistotu.

6. Provede se analyza vysledkd (viz napt. Havlicek, 1992).

Popsany postup je ilustrovan na pfikladu zemé&d€lské farmy (5 typl plodin, 4 k:
tegorie zvifat, nikup a prodej). Matematicky model je popsdn vychozi a vysledno
simplexovou tabulkou (tab. I a IT). Neur¢itd data pfedstavuji v tabulce omezeni by:
15 (koncentrovana krmiva — maximdlni tolerance ps = 40, tj. hodnota by se miz
pohybovat v rozmezi 15-55) a omezeni bi7 = 1 450 (pracovni ndklady v 10° K¢ -
maximalni tolerance pi7 = 100, tj. bi7 se miZe pohybovat v rozmezi 1 450-1 550)
V tab. III jsou spo&itdny varianty feSeni modelu LP pro hladiny rizika p1 = 0; p2=
0,05; ...; pia= 1.

fuzzy rozhodovani; fuzzy linedrni programovani; posibilistické programovani; sto-
chastické programovani; riziko pfijatého feSeni; méfeni rizika; systémy podpory roz-
hodovani
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