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INTRODUCTION

The non-point source pollution is a global problem 
affecting the safety of drinking water supply and aquatic 
habitats. Pollutants originating from agricultural runoff 
include sediment, nitrogen, phosphorus, pesticides, 
pathogens, salts, trace elements, and dissolved organic 
carbon (O ’ G e e n  et al., 2010). It is well known that 
excessive amounts of phosphorus and nitrogen may 
cause eutrophication of freshwaters (Figs. 1 and 2) and 
coastal zones (Fig. 3). It has been well established that 
phosphorus is the key element and limiting nutrient for 
algae and cyanobacteria in a majority of freshwaters 
(e.g. Vo l l e n w e i d e r , 1968; C h i a u d a n i ,  V i g h i , 

1974; M i l l e r  et al., 1974). On the other hand, it 
has been long known that eutrophication of estuaries 
and coastal waters is caused by excessive loadings 
of nitrogen (Fleischer et al., 1987; B a k e r , 1992; 
N i x o n , 1995; H o w a r t h  et al., 1996; H o w a r t h , 
M a r i n o , 2006; H ä g g , 2010). 

Nitrogen is applied on agricultural fields in various 
forms (inorganic fertilizers, urea, manure), however the 
major nitrogen species in tile drainage is nitrate-N as all 
other forms are converted into nitrate-N via hydrolysis 
and nitrification. P o w l s o n ,  A d d i s c o t t  (2005) 
pointed out that urea is by far the most commonly 
used nitrogen fertilizer. After application it is hydro-
lyzed to ammonia-N within few days and ammonia-N 
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is then available for plant uptake. If not uptaken by 
plants, ammonia-N is nitrified to nitrate within 1–4 
weeks. Nitrate-N is a very mobile and chemically 
inert nitrogen species and, therefore, it is easily lost 
from the soil profile by leaching (e.g. K l a d i v k o  et 
al., 1991; K o v a c i c  et al., 2000; G o s w a m i  et al., 
2009; M e i s i n g e r  et al., 2015). It has been shown 
that nitrate leaching is affected to a great extent by 
tillage practices – this effect is highly variable and 
the impact is the highest when tillage occurs shortly 
before a season of high water-recharge (A d d i s c o t t , 
D e x t e r , 1994; Z i b i l s k e ,  B r a d f o r d , 2007; 
S t r u d l e y  et al., 2008; M e i s i n g e r  et al., 2015).

Wetlands can act as filters removing particulate 
material, as sinks accumulating nutrients, or as trans-
formers converting nutrients to different forms such 
as gaseous forms of nitrogen (R i c h a r d s o n , 1989). 
The ability of natural wetlands to retain nitrogen from 
freshwaters was recognized and reported since the 
1970s (M i t s c h  et al., 1979; R i c h a r d s o n , 1990; 
F i s h e r ,  A c r e m a n , 2004). F i s h e r ,  A c r e m a n 
(2004) reviewed the available results from 54 natu-
ral wetlands in North America, Europe, Australasia, 
and Africa and concluded that 80% of the wetlands 
retained/removed nitrogen with the average retention 
of 67%. The major processes responsible for nitrogen 
removal in wetlands are denitrification (L o w r a n c e 
et al., 1984; X u e  et al., 1999; P o e  et al., 2003; 
T a n n e r , 2004), uptake by plants, and subsequent 
nitrogen accumulation in the plant biomass (J i a n g  e t 
a l ., 2007; B o r i n ,  T o c c h e t o , 2007), sedimenta-
tion (B o r i n , T o c c h e t o , 2007), and volatilization 
(Vy m a z a l , 2007). 

The main objective of this study is to evaluate 
nitrogen removal efficiencies of constructed wetlands 
designed to treat agricultural drainage waters. 

Constructed wetlands for nitrogen removal from 
agricultural drainage waters

The use of constructed wetlands to remove nitrogen 
from agricultural drainage waters was first proposed 
during the late 1980s (M i t s c h , 1992; v a n  d e r 
Va l k , J o l l y , 1992). M i t s c h  (1992) set up several 
design principles that could be applied to wetland 
construction for non-point source pollution control: 
(a) minimum maintenance, (b) use of natural energies, 
(c) multiple objectives, (d) landscape-friendliness, (e) 
systems as ecotones, (f) design for function, not for 
form, (g) no over-engineered systems, and (h) time 
necessary for full development. Constructed wetlands 
designed to remove nutrients from drainage waters 
could be positioned either ‘in-stream’ or ‘off-stream’, 

Fig. 1. Filamentous algae, a typical result of eutrophication. 
Břehovský Creek, South Bohemia 
Photo: author 

Fig. 2. Cyanobacterial water bloom in a drinking water reservoir 
Švihov, Czech Republic 
Photo: author

Fig. 3. Eutrophication of a coastal water in Baltic Sea at Kuressaare, 
Saaremaa, Estonia 
Photo: author
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however, the in-stream configuration is applicable only 
in small streams (M i t s c h , 1992). A special type of 
‘in-stream’ wetlands designed to mitigate agricultural 
drainage pollution are naturally overgrown vegetated 
ditches that have recently been used (e.g., M o o r e  et 
al., 2010; K r ö g e r  et al., 2012). In general, shallow 
ponds fed by small streams with high concentrations 
of nitrate or directly by agricultural drainage can also 
effectively remove nitrate in the anoxic zones near the 
bottom, especially during the growing season. K n i g h t 
(1992) pointed out that besides the primary purpose 
of retention of nutrients and sediments, constructed 
wetlands designed for non-point pollution ameliora-
tion have the ancillary or secondary benefits such as 
biomass production, secondary production of fauna, 
food chain and habitat diversity or aesthetic/recrea-
tional/educational human uses. 

Vast majority of constructed wetlands for nu-
trient removal from agriculture drainage waters 
have been designed as free water surface systems  
(FWS CWs) with deeper inflow section for sedimen-
tation of particles which may be present in drainage 
ditches from the surface runoff after heavy rain events  
(Figs. 4 and 5). The deeper part is usually 1–2 m deep 
and often is modified to allow for sediment removal. 
The vegetated beds are usually shallow trenches with 
no specific requirements for bottom soil. The major 
function of the soil is to provide rooting medium for 
macrophytes. Water depth is usually between 10 and 
50 cm (K a d l e c ,  W a l l a c e , 2009; V y m a z a l , 
2013). Most processes responsible for nitrogen removal 
in FWS CWs occur in the water column and in the 
layer of decaying plant material on the bottom. The 
processes in the water column are aerobic, the anoxic 
and anaerobic processes may occur within the litter 
layer (Vy m a z a l , 2007). 

There is a wide variety of plants that have been 
used for CWs treating agricultural drainage (Table 1), 
however, the most commonly used species are Typha 
latifolia and Phragmites australis. Other more fre-
quently used species are Phalaris arundinacea, Scirpus 
lacustris, Glyceria fluitans, Sparganium erectum, 
Carex spp. or Polygonum lapathifolium. The plants 
are usually not harvested as decaying plant material 
provides important source of organics for denitrifica-
tion as the concentration of organics in agricultural 
drainage waters is often low as compared to nitrate 
concentrations. The emergent macrophyte species are 
quite often accompanied by submerged species which 
occur mostly voluntarily. Emergent species produce 
more organics in the sediment but submerged species 
may provide more surface for denitrifying bacteria 
(We i s n e r  et al., 1994). Both emergent and submerged 
macrophytes provide a substrate for the growth of pe-
riphytic algae which contribute to removal of nitrogen 
as well (Vymazal, Kröpfelová, 2008). 

Probably the highest number of constructed wet-
lands for nutrient removal from agricultural drainage 
waters was built in Sweden (F l e i s c h e r  et al., 1994; 
J a n s s o n  et al., 1994; A r h e i m e r ,  W i t t g r e n , 
2002; A r h e i m e r ,  P e r s , in press). According to 
A r h e i m e r ,  P e r s  (in press), during the period 
1996–2006, a total of 1574 wetlands were constructed 
with a total surface area of 4135 ha. In the following 
period 2009–2011, 564 wetlands were created with a 
total surface area of 2468 ha. The investment cost during 
the period 1996–2011 amounted to 130 million EUR. 

Nitrogen removal in constructed wetlands 

The inflow load of constructed wetlands treating 
agricultural drainage waters included in the survey of 

Fig. 4. Free water surface constructed wetland for treatment of 
tile drainage planted with Typha latifolia at Rodstenseje, Denmark 
Photo: author

Fig. 5. Free water surface constructed wetland for treatment of agri-
cultural drainage planted with Phragmites australis. Laluzea, Spain 
Photo: author
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41 constructed wetlands varies within several orders 
of magnitude between 11 and 47 272 kg N ha–1 per 
year. The amount of removed nitrogen from these 
wetlands varies considerably as well, between 11 and 
13 026 kg N ha–1 per year (Table 1) with the median 
removal of 426 kg N ha–1 per year. This is in a good 
agreement with results obtained by T o n d e r s k i  et 
al. (2015) who reported an average annual nitrogen 
removal in constructed wetlands built for treatment 
of agricultural drainage between 298–336 kg N ha–1 
per year for the period 2007–2013. As compared to 
these wetlands, constructed wetlands built with the 
primary purpose of biodiversity increase, the nitrogen 
removal varied only between 32 and 46 kg N ha–1 per 
year. The major reason for this difference is the fact 
that biodiversity wetlands were not optimally designed 
for nutrient removal (e.g. flow path, retention time). 
The authors also calculated the potential nitrogen 
removal up to 1000 kg N ha–1 per year in the case of 
high inflow loads. 

Nitrogen removal efficiency is highly variable 
and the major factors that affect removal efficiency 
are inflow load and the ratio between the drained 
catchment (C) and constructed wetlands (W) surface 
areas (F i s h e r ,  A c r e m a n , 2004; K o s k i a h o , 
P u u s t i n e n ,  2005; O ’ G r e e n  et  al . ,  2010). 
Concerning the effect of the W/C ratio, K o s k i a h o , 
P u u s t i n e n  (2005) found a close relationship  
(R2 = 0.77) when analyzing results from agricultural 
wetlands in Finland, Sweden, and the USA. The authors 
pointed out that for 20% N removal, the W/C ratio  
should be at least 2% while 50% removal can be achieved 
with the W/C ratio > 7%. T a n n e r  et al. (2010) re-
ported that 40% nitrate removal can be achieved with 
the W/C ratio 5% and further increase of the W/C ratio 
would not bring any substantial removal of nitrate. 
The W/C ratio effect on nitrogen removal in surveyed 
systems (Table 1) yields a similar relationship to that 
reported by T a n n e r  et al. (2010). The W/C ratio  

necessary for 40% removal of total nitrogen (TN) is 
only 1% and further increase of the W/C ratio does 
not result in increased TN removal (Fig. 6). However, 
the relationship is quite weak (R2 = 0.116). This may 
be caused by the fact that the ‘drained catchment area’ 
reported in the literature may not necessarily include 
in some cases only drained agricultural fields.  

A very close relationship has been reported between 
inflow and removed nitrogen loads. S a u n d e r s , 
K a l f f  (2001) reported a highly significant relation-
ship (R2 = 0.82, P < 0.001) for 23 wetlands in the USA, 
Canada, and Denmark. A similar result was observed 
by M i t s c h  et al. (2001). The results included in our 
survey yielded a moderate relationship (R2 = 0.61)  
(Fig. 7). At the same time it is important to realize 
that the removal efficiency decreases with increasing 
inflow load. S a u n d e r s ,  K a l f f  (2001) observed a 
very strong (R2 = 0.82) indirect correlation between 
inflow nitrogen loading and nitrogen percentual re-
moval. Similar trend but less marked (R2 = 0.353) 
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Fig. 6. Dependence of total nitrogen (TN) removal efficiency (in %) of 
the constructed wetland on the constructed wetland (W)/drained catch-
ment (C) area ratio (in %) 

Fig. 7. Relationship between inflow and removed nitrogen loads (kg N 
ha–1 per year) in constructed wetlands treating agricultural drainage waters

Fig. 8. Relationship between inflow nitrogen load (kg N ha–1 per 
year) and treatment efficiency (%) in constructed wetlands treating 
agricultural drainage waters
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Table 1. The amount of nitrogen removed in constructed wetlands treating agricultural drainage waters. Systems are ranked according to the 
removed load.  Part 1.

locality
Wetland 
area (a) 

(ha)

Catch-
ment area 
(B) (ha)

a/B 
(%)

Removed 
load (kg 

N ha-1 per 
year)

Concentra-
tion (mg/l) Remo- 

val (%) Dominant vegetation Reference
in out

Finland 0.48 90 0.53 11 8.40

Typha latifolia, 
Juncus filiformis,  
J. effusus, Alopecurus  
pratensis, Eleocharis  
palustris, Bidens sp.

Koskiaho et al. 
(2003)

USA 1.30 14 9.30 17
Eleocharis obtuse, Lud-

wigia palustris, Schoeno-
plectus americanus

Jordan et al. (2003)

Sweden 2.10 100 2.10 17 not specified Strand and Wiesner 
(2013)

Norway 0.087 103 0.085 50 1.60 1.50 6.3 Glyceria fluitans, Carex 
spp. Braskerud (2002)

Norway 0.09 148 0.06 56 3.21 3.10 4.9

Scirpus lacustris, Acorus 
calamus, Phragmites 

australis, Typha latifolia, 
Equisetum fluviale, Glyce-

ria fluitans

Braskerud (2002)

Finland 60 2 000 3.00 57 3.10 2.76 11

Phragmites australis, 
Lysimachia thyrsiflora, 
Lythrum salicaria, Peu-

cedanum palustre, 
Carex aquatica, Scuttelaria 

galerigulata

Koskiaho et al. 
(2003)

Norway 0.0345 50 0.07 93 3.49 3.35 4.0

Scirpus lacustris, Acorus 
calamus, Phragmites 

australis, Typha latifolia, 
Equisetum fluviale, Glyce-

ria fluitans

Braskerud (2002)

USA 0.16 3.76 4.26 117 15.60 9.30 40.4 Kovacic et al. 
(2006)

Norway 0.084 22.1 0.38 159 5.14 4.38 17.4

Sparganium erectum, 
Phragmites australis, 
Phalaris arundinacea, 
Myosotis scorpioides

Braskerud (2002)

Korea 0.886 465 0.19 195 7.20 5.30 26.4 Maniquiz et al. 
(2011)

Australia 0.045 90 0.05 230 2.77 2.57 7.2 Raisin et al. (1997)

USA 0.78 25 3.12 241 7.50 1.16 84.5 not specified Larson et al. (2000)

USA 0.30 5 6.00 245

Phragmites japonica, Ty-
pha angustifolia, T. orien-
talis, Miscanthus sinensis, 
Zizania caduciflora, Ne-

lumbo nucifera, Oenanthe 
javanica

Kovacic et al. 
(2000)

Finland 0.60 12 5.00 280 9.80

Phragmites australis, 
Schoenoplectus validus, 

Rorippa nasturtiumaquati-
cum, Paspalum distichum, 

Persicaria lapathifolia

Koskiaho et al. 
(2003)

Norway 0.046 21.9 0.21 285 5.14 4.40 14.4

Sparganium erectum, 
Phragmites australis, 
Phalaris arundinacea, 
Myosotis scorpioides

Braskerud (2002)

USA 0.80 25.6 3.13 298 Kovacic et al. 
(2000)

Taiwan 13.65 308 Wu et al. (2010)
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locality
Wetland 
area (a) 

(ha)

Catch-
ment area 
(B) (ha)

a/B 
(%)

Removed 
load (kg 

N ha-1 per 
year)

Concentra-
tion (mg/l) Remo- 

val (%) Dominant vegetation Reference
in out

Italy 0.32 6 5.33 359 Phragmites australis, 
Typha latifolia

Borin and Toccheto 
(2007)

USA 0.40 12.3 3.25 367 18.40 12.80 30.4 Kovacic et al. 
(2006)

Sweden 1 300 0.33 374 not specified Strand and Wiesner 
(2013)

USA 0.60 15 4.00 426 Kovacic et al. 
(2000)

USA 1.63 71 500 0.0023 542 2.40 0.75 68.8 Scirpus sp., Typha sp. Beutel et al. (2009)

Sweden 0.22 60 0.37 576 not specified Strand and Wiesner 
(2013)

Sweden 0.80 580 Arheimer et al. 
(2004)

Korea 5 20 25.00 605 3.50 1.35 61.4 Phragmites australis, 
Typha angustifolia Kim et al. (2010)

USA 150 2 000 7.50 681 10.89 2.50 77.0 Typha latifolia, Schoeno-
plectus californicus Diaz et al. (2012)

USA 0.60 15 4.00 780 14.10 11.00 22.0 Kovacic et al. 
(2006)

Sweden 0.75 380 0.20 791 not specified 9,6

Norway 0.12 80 0.15 800 8.03 6.29 21.7

Phalaris arundinacea, 
Glyceria fluitans, Typha 

latifolia, Sparganium erec-
tum, Phragmites australis

Blankenberg et al. 
(2008)

USA 4.50 1 620 0.28 888 5.70 5.31 6.8 Typha latifolia, Polygonum 
lapathifolium Diaz et al. (2012)

Sweden 0.40 650 0.062 989 not specified Strand and Wiesner 
(2013)

Sweden 0.28 200 0.14 1 003 not specified Strand and Wiesner 
(2013)

Sweden 3 1 030 4.60 3.50 not specified Arheimer and 
Wittgren (2002)

USA 3.30 425 0.78 1 050 8.20 3.50 57.3 Nyssa biflora, Acer ru-
brum, Salix nigra Hunt et al. (1999)

Spain 1.32 22 6.00 1 200* 20.00
Phragmites australis,  

Typha latifolia, Scirpus  
lacustris, Carex divisa

Moreno-Mateos et 
al. (2010)

Sweden 0.65 880 0.074 1 524 not specified Strand and Wiesner 
(2013)

USA 2.50 324 0.77 2 072 16.17 9.77 39.6 Typha latifolia, Polygonum 
lapathifolium Diaz et al. (2012)

Sweden 0.40 4 336 8.70 7.50 not specified Arheimer and 
Wittgren (2002)

New 
Zealand 0.026 2.6 1.00 8 410 34.90 7.59 78.3 Glyceria declinata, Holcus 

lanatus, Typha orientalis Tanner et al. (2005)

USA 2.30 324 0.71 11 267 16.17 9.76 39.6 Polygonum lapathifolium Diaz et al. (2012)

Denmark 0.14 100 0.14 13 026 23.50 13.70 41.7 Typha latifolia Cochran et al. 
(2016)

*Nitrate nitrogen only.

Table 1. The amount of nitrogen removed in constructed wetlands treating agricultural drainage waters. Systems are ranked according to the 
removed load.  Part 2
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was reported by F i s h e r ,  A c r e m a n  (2004) for 
natural wetlands or by T u r n e r  (1999) for wetlands 
designed for water quality improvement in Louisiana. 
Our survey (Fig. 8) resulted in low correlation  
(R2 = 0.115), however, the decreasing trend is apparent.

Other important parameters affecting the removal 
of nitrogen are hydraulic loading rate, hydraulic re-
tention time, and plant uptake. Longer residence time 
provides a greater opportunity for sediment-water 
contact, thereby promoting retention processes such 
as denitrification and sedimentation (S v e n d s e n , 
K r o n w a n g , 1993; W i n d o l f  et al., 1996; J o r d a n 
et al., 2003). However, the residence time is difficult 
to calculate for agricultural drainage waters because of 
highly variable flow of the drainage (W o l t e m a d e , 
2000). It has been generally agreed that hydraulic re-
tention time should be longer than two days to achieve 
any substantial nitrate removal (Hey et al., 1994; 
P h i p p s ,  C r u m p t o n , 1994; K o v a c i c  et al., 
2000; B e u t e l  et al., 2009). However, the excessive 
long retention time may cause adverse effects such 
as increased release of dissolved organic matter or 
increased salinity due to evapotranspiration (D i a z 
et al., 2008). Hydraulic loading rate, calculated by 
dividing the flow rate by the wetland surface area, 
is very seldom calculated for agricultural drainage 
waters due to difficulties with a constant drainage 
flow. The fluctuation of the flow during the year is 
usually so great that any ‘average’ hydraulic retention 
time is just misleading.

Plants are an indispensable part of the wetlands 
but they are seldom taken into consideration when 
removal mechanisms in constructed wetlands are 
evaluated. Due to vigorous growth of wetland plants, 
the amount of nitrogen sequestered in the aboveground 
biomass is usually high and commonly amounts to 
40–60 g N m–2, i.e. 400–600 kg N ha–1 for tall spe-
cies such as Phragmites australis or Typha latifolia 
(Vy m a z a l  et al., 1999; Vy m a z a l ,  K r ö p f e l o v á , 
2008). As already mentioned, the predominant form 
of nitrogen in agricultural drainage waters is nitrate 
and therefore denitrification is always considered as 
the major removal process. Due to lack of ammonia in 
drainage waters, nitrate is taken up by plants as well. 
In order to remove nitrogen sequestered in the biomass, 
the plants must be harvested. However, vegetation in 
constructed wetlands with free water surface is usually 
not harvested (Vy m a z a l , 2013) and, therefore, most 
of nitrogen is released back to water during plant decay 
and subsequent decomposition (e.g. D i n k a  et al., 
2004; L o n g h i  et al., 2008). The question remains 
whether the biomass should be harvested to enhance 
removal of nitrogen because decaying biomass is a 
source of organics necessary for denitrification. So 
far, there have been no studies that would critically 
compare the benefits of harvesting and provision 
of organics for decomposition. This gap concerning 
vegetation maintenance still needs to be filled in. 
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