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The paper intends to give a practical and simple instruction for the distribution of a finite number of load-bearing linear members

in a plane or cylindrical structure subjected to a general continuous load of cylindrical or translational distribution with surface

lines or parallels of conforming orientation to assure that the beams are exposed to loads of equal intensity. The paper shows

(both analytically and graphically) in particular the location of these load-bearing members with reference to linearly increasing

loads which is of extraordinary importance in engineering practice.

hydrostatic pressure; earth pressure; retaining walls with horizontal beams; basement walls subjected to horizontal loads; vertical
cylindrical (particularly circular) shells with liquid or loose solid fill stiffened with horizontal members (particularly rings)

INTRODUCTION

In engineering practice it is often necessary to distrib-
ute stiffening or load-bearing linear members of a two-
dimensional structure so as to assure their uniform (i.e.
equal or at least approximately equal) exposure to loads.
This problem can be solved “almost always* graphically
(and usually “adequately* also analytically), if the three-
dimensional loading diagram of the two dimensional
structure is represented by a “reasonable cylindrical or
translational or rotationally symmetrical surface with
surface lines or parallels which are parallel with the load-
bearing members in case of a plane structure and in parallel
position in case of a cylindrical wall or a hip (Fig. 1). Con-
sequently, it is assumed that the two-dimensional structure
is of plane (wall or plate) or cylindrical type.

The above-mentioned structural requirement arises
either from the fact that only identical (with reference to
both the quality of material and the cross section dimen-
sions and shape) load-bearing members are available,
what results in a more or less natural assumption of the
constant thickness of the load-bearing surface or because
it is not permissible for some reason or other to alter the
thickness of the plane structure with built-in stiffeners
(e.g. in accordance with the depth below the level of the
compressive medium, etc.). Let us note that for an en-
tirely general (i.e. non-cylindrical or possibly non-trans-
lational or rotationally symmetrical) load applied to the
plane structure (the less for the structure with generally
defined centre line) with linear stiffeners the required
solution does not exist, as a rule.

The outlined problem may apply, e.g. to beam floors
loaded with loose material distributed in accordance with
introduced assumptions, reinforced concrete basement or
retaining walls (whether stiffened with horizontal beams
or ribs or not) acting in horizontal direction and exposed
to earth pressure, sluice gates and mobile panel weirs
resisting hydrostatic pressure, vertical circular cylindrical
or generally cylindrical tanks filled with some liquid or
loose solid medium, etc.
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As the solution of the problem is entirely analogous
both for plane and cylindrical linearly stiffened load-
bearing surfaces, we shall concentrate on the derivation
of the required rules and their interpretation for the sim-
pler plane formation.

MATERIAL AND METHODS

The solution of the mentioned engineering problem is
based on the mathematical principles of integral calculus
(in particular the properties of summation curves, which
are connected with definite and indefinite integral of gen-
erally defined load function). From this mathematical
analysis follows — for “triangulary* defined load function
— also well known geometrical solution based on Euk-
lides-Thalet theorem.

Determination of transverse intervals for identical
intensites of load applied to linear members in
longitudinal direction and location of stringers

Let us consider a plane load-bearing formation, such
as a plate, stiffened with stringers (straight linear beams),
loaded in its whole with [ by a cylindrical continuous
load with surface lines in stringer direction. Let the sec-
tion perpendicular to the stringers of the loading cylinder
be defined by a continuous load function g(x) — see
Fig. 2. The objective is to assure that every stringer
should support an identical part of the load or, in other
words, to find the limits x; of finite intervals within
which the trapezes with one (generally) curved side
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are of equal area with the understanding that the indi-
vidual longitudinal beams will be situated in their cen-
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The positions of the total n centroids further arise,
according to the Varignon theorem, from the relation
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integral curve Q(x)+ C=

~ 15 X)) t; and xo 0. Let us note that the
jq(x) -dx+ C in Fig. 1 has

been so chosen as to pass through the origin O, i.e. to
correspond with integration constant C =0, as evi-

dently % =q(x).

Transverse intervals and location of equally loaded
stringers for loads with linear intensity increase

Let us consider now a special “loading cylinder®, see
a prism in the base of which, perpendicular to the string-
ers, its direction line is defined by the load function
q(x) = qo + k - x (see Fig. 3).

The application of the general condition (1) derived
the above results easily in four-parameter quadratic equa-
tions (with g, k, [ and n, which are usually chosen, as
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Fig. 1. Character of examined plane struc-
tures with linear load-bearing members
and the types of their all-surface loads
(some typical examples)

b} representation of plane
ioad as a translational
surface

independent parameters) yielding successively n real so-
lution.

f\/q(z)+2'r/l\"j_(qo,[+—]2~-k']2>_qo
5= k

Jj =, 2,3,..., n.Letus note that in case of hydrostatic
problems the initial pressure may be represented e.g.
by atmospheric pressure, when k =l, while in case of
earth pressures the initial horizontal pressure g, arises
from additional ground loading by a certain vertical
load different from zero and the parameter k plays the
role of the lateral pressure coefficient (active, passive
or at rest).

If we denominate now g; = g(x;), we arrive easily to
the relation

2,2:k-j 1
C/_j:\/q5+ , »(q0~1+5~k~12). “4)
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Apart from that the condition (2) yields the formula

i
G- W1+ +(Gi =) 3 0 +2-x)
g= ‘ . (2a)
' Gj-1+4)

valid for the assumed “‘trapezoidal* load defined by the
equation g(x) = gy + k - x.

Let us concentrate now on the “triangular load de-
fined by the relation g(x) = k- x or let us assume that
qo 9. In that case Eq. (1) acquires the simple form of

e 2=_i_;.p

2ij_2Ank1, (1a)
which shows at first sight that it holds

)‘:/‘:1'\/:{- (3a)

The simple biparametric Eq. (3a) is a special case of
Eq. (3). Let us note that during its derivation it was
possible (due to the absence of g) to eliminate also the
parameter k. For the sake of completeness, let us note
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Fig. 2. Load ¢g(x) uniformly distributed
to stringers for n = 4
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that for the assumed “triangular load Eq. (4) is con-
verted into the simple equation

g=ap =k 1 VL =k (4a)

Due to the simplicity of Eq. (3a) the break-up of the
(transverse) interval [ into individual sections x; — Xi_g
under linear load g = k - x, valid for all x € (0; 1); so as
to subject all stringers to equal load, can be tabulated
(Table 1).

If we apply now Eq. (4a) to Eq. (2a) we come, after

rearrangement, to the formula for the determination of

n centroids #; of trapezes of (generally) equal area
2

, into which a rectangular triangle of the base [

2'n
disintegrates. Thus we obtain “location” formulas of
the type
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Fig. 3. Linearly increasing load ¢(x) = g, + k.x uniformly distributed
to stringers for n = 4

The alternative form (2b) can be used to advantage
for the structuring of the above Table 1 into the tabula-
tion of relative centroid coordinates ’/[ forj =1, 2,..,
n =10 (Table 2).

Table 1. Relative co-ordinates *# allocating to stringers equal load from transverse sections <xj —X_ > for the load ¢ =k - x applicable to all

xe{0:1),j=1,2...n=10

¥,

' %, %, 9, ) 7 ) v, ) )
1 1

2 0.7071 1

3 0.5774 0.8165 1

4 0.5000 0.7071 0.8660 1

5 0.4472 0.6325 0.7746 0.8944

6 0.4082 0.5774 0.7071 0.8165 0.9129 1

2 0.3780 0.5345 0.6547 0.7559 0.8452 | 0.9258 1

8 0.3536 0.5000 0.6124 0.7071 0.7906 0.8660 0.9354 1

9 0.3333 04714 0.5774 0.6666 0.7454 0.8165 0.8819 0.9428 1
10 0.3162 0.4472 0.5477 0.6325 0.7071 0.7746 0.8367 0.8944 0.9487 1
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Table 2. Relative co-ordinates % of centroids of sections <x; —x;_;> under the circumstances of Table |

i
' v Y Y v o v | Y w,
] 0.667 j
2 0.4714 0.862
3 0.3849 0.7038 09113
4 0.3333 0.6095 0.7892 0.935
5 0.2981 0.5452 0.7059 0.8359 0.948
6 0.2721 0.4976 0.6444 0.7631 0.8656 0.957
/ 0.2520 0.4607 0.5966 0.7065 0.8014 0.8861 0.963
8 0.2357 0.4310 0.5581 0.6609 0.7496 0.8289 0.9011 0.968
9 02222 0.4063 0.5262 0.6231 0.7067 0.7815 0.8496 0.9127 0.9717
10 0.2108 0.3854 0.4991 0.5911 0.6705 0.7414 0.8060 0.8659 0.9218 0.975
CONCLUSION material (reinforced concrete, steel, timber) and in case

The paper gives a detailed instruction (including an
analytical substantiation) for the stiffening of some se-
lected plane elements by a finite number of linear
equally loaded beams under specially defined all-surface
load. In accordance with the reality of the solution the
instruction is limited to plane elements (plates and walls)
or cylindrical plane elements with the proviso that load
can be represented by a generally cylindrical surface
with the base perpendicular to linear beams (stringers) or
a general translational surface with “meridian™ sections
perpendicular to (generally not straight) linear beams
(playing the role of parallels to the load-bearing surface).

The general progress of the solution of the problems
of the above-mentioned type is based on the principles
of integral calculus (in particular the properties of sum-
mation curves). The paper contains i.e. also the tabula-
tion of the relative coordinates for the break-up of the
interval with linear load function so that within their
limits the linear beams concerned are loaded with equal
intensity and contain also the tabulated relative co-ordi-
nates of location of these beams for their total number
from one to ten inclusive.

It follows from the context of the paper that the exi-
stence of the solution (apart from the explicitly defined
geometry of the structure) will depend also on the stabil-
ity of the load. Hence, the assumption of a certain fixed
load function (in the “meridian‘ section). Therefore, any
other than the initial (given) state would necessarily
cause inequalities in the loading of firmly installed linear
load-bearing members which was excluded from our
considerations. We have considered the mutual spacing
of these parallel load-bearing members significantly in-
ferior to their lengths (spans) This condition is complied
with the more, the higher the number of these load-bear-
ing members for the given height of the plane structure.
This points, inter alia, also to the considerably higher
structural height of the beams in comparison with the
structural thickness of the supported surface. Apart from
that it is necessary to point out that the solved problem
can find broad application both to the structures of one
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of combined materials, composite structures (steel with
reinforced concrete, steel with wood, etc.) which are less
homogeneous. The outlined circumstances substantiate
the structural dominance of beams as compared with the
supported surface so that the neglect of their mutual in-
teraction can be considered as “acceptable. On the other
hand it is advisable to emphasize that the determination
of the distribution of linear load-bearing members of un-
equal stiffness to assure that the given load be regularly
distributed among them is a far more complicated (stati-
cally indeterminate) problem. This very fact substantiates
the above applied assumption of the application of iden-
tical linear members, which is so frequent in engineering
practice and has offered simultaneously a relatively easy
solution presented in the paper.

The objective of the paper was not only to show some
theoretical relations, but also — and particularly — to pro-
vide certain practical aids (see the appropriate formulas
and Tables 1 and 2 in Parts 2 and 3 of the paper) for
structural engineers and designers useful for the design
of plane structural members some examples of which
were mentioned in the introduction and for the solution
of technical problems of analogous type.
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NOVOTNY, R. (Ceské zeméd&lské univerzita, Fakulta lesnickd a environmentélni, Praha, Cesk4 republika):
Vyztuzovani plosnych konstrukei stejné namahanymi liniovymi nosnymi prvky.
Scientia Agric. Bohem., 36, 2005: 34-38.

V bézné technické praxi je Casto zapotifebi rozmistit kone¢ny pocet liniovych nosnych prvki (podélniki, resp.
zakfivenych nosnikl) vyztuzujicich zatiZenou rovinnou sténu, resp. obecné definovanou véalcovou plochu tak, aby
tyto elementy byly namdhdny stejnou intenzitou. Tato tdloha (realisticky) predpokladd, ze plo$né konstrukce celf
spojitému rozlozeni zatizeni po vySce svych povrSek a Ze zaté€Zujici obrazec lze proto zobrazit prizmatem, resp.
translacni plochou, takZe paralelné smérované nosné liniové prvky jsou v normdlovém postaveni k roviné spojité
definovaného zatiZeni. Piispévek poddvd obecné feSeni takto formulované ulohy, které je zaloZeno na principech
elementdrniho infinitezimdiniho poctu (vlastnostech souctovych car). Zvlastni pozornost je posléze vénovana analy-
tickému feSeni pro ,lichobéZzné** a ,trojuhelnikové rozloZeni zatiZeni, kterd jsou v inZenyrské praxi nejb&Zné&jsi.
Praktickym vysledkem ¢lanku bylo sestaveni tabulek pro situovdni nosnych liniovych prvkl v po¢tu do deseti kusi
(vcetng) pfi linedrnim zatiZeni ,trojihelnikového* charakteru.

hydrostaticky tlak; zemni tlak; opérné zdi s horizontdlnimi nosniky; zdi zédkladd vystavené horizontdlnimu zatiZenf;
vertikdln{ vélcové (hlavné kruhové) skofepiny s tekutou nebo voln€ sypanou vyztuzi zesilenou horizontdlnimi prvky
(hlavné kruhy)

Contact Address:

Doc. Ing. Radimir Novotny, DrSc., Ceskd zeméd&lskd univerzita v Praze, Fakulta lesnick4 a environmentalni, katedra staveb,
Kamycka 1176, 165 21 Praha 6-Suchdol, Ceska republika, e-mail: novotny @fle.czu.cz

38 SCIENTIA AGRICULTURAE BOHEMICA., 36. 2005 (1): 34-38




