
92 SCIENTIA AGRICULTURAE BOHEMICA, 39, 2008, Special Issue 1: 92–96

DYNAMIC SOFTWARE QUALITY ASSURANCE*

D. Kardoš

Czech University of Life Sciences, Faculty of Economics and Management, Department of
Information Engineering, Prague, Czech Republic

Basic principles of the dynamic software quality assurance are explained in this paper. The current assume the quality testing in
discrete time intervals. After quality evaluation the next time of quality test shall be planned. Continuous quality monitoring between
two tests is not required. Author therefore suggests implementation sub-characteristic “users monitoring and cooperation” defined
as the capability of the of-the-shelf software product to provide the level of the ability of the software to be centrally monitored by
the maintenance center and communicate with other copies of the same software product on private network or Internet. Thereby it
creates a dynamic model from primarily static one.

dynamic software quality assurance; software product quality; measures for users monitoring and cooperation

INTRODUCTION

The software product quality is defined as level of sat-
isfaction of specified or implied requirements by the in-
herent set of inherent attributes of the software. This con-
cept of quality has a static character. After a product
quality evaluation ends, the new quality evaluation after
changes can be planned, but continuous quality monitor-
ing during the period of usage between two quality testing
points of the software is not expected. G i l l e s (1992)
states, “The quality is transparent when presented, but eas-
ily recognized in its absence”. This assertion is the conse-
quence of the simple notion that it is not possible to fore-
see all circumstances and therefore the specification of
needs and requirements for all quality characteristics can
be not appropriate. Hence, tomorrow’s quality view can
be different from the today's one. For these reasons author
suggests the implementation of a new subcharacteristic of
software quality characteristic functionality. This subcharac-
teristic has the draft name “Users monitoring and coopera-
tion” and describes the level of the ability of the software to
cooperate with the related software and communicate with
software product on Internet. After the adding the new
subcharacteristic of functionality the step toward the trans-
formation of the static software product quality model to
the dynamical one can be accomplished. The benefit of
this replenishment can be the minimalization of the period
between the time when the quality problem occurs and the
time when users are informed about the problem and in-
structed about precautions, which can be proposed. This
possibility can lead to decrease in user’s losses.

MATERIAL AND METHODS

In this part of the paper we shall describe in short prin-
ciples of the current state of international standardization
of software product quality. For details see Va n í č e k

(2000), ISO/IEC 9126, ISO/IEC 14598, ISO/IEC 2500n,
ISO/IEC 25051.

APPROACHES TO QUALITY

User quality needs can be specified as quality require-
ments by quality in use measures, by external measures,
and sometimes by internal measures. These requirements
specified by measures should be used as criteria when
a product is validated. Achieving a product that satisfies
the user’s needs normally requires an iterative approach
to software development with continual feedback from
a user perspective.

External Quality Requirements specify the required
level of quality from the external view. They include re-
quirements derived from user quality needs, including
quality in use requirements. External quality requirements
are used as the target for validation at various stages of
development.

Internal Quality Requirements specify the level of re-
quired quality from the internal view of the product. Internal
quality requirements are used to specify properties of interim
products. These can include static and dynamic models,
other documents and source code. Internal quality require-
ments can be used as targets for validation at various stages
of development. They can also be used for defining strategies
of development and criteria for evaluation and verification
during development. This may include the use of additional
measures. Specific internal quality requirements should be
specified quantitatively using internal measures.

Internal quality is the totality of characteristics of the
software product from an internal view. Internal quality is
measured and evaluated against the internal quality re-
quirements. Details of software product quality can be
improved during code implementation, reviewing and test-
ing, but the fundamental nature of the software product
quality represented by internal quality remains unchanged
unless redesigned.

* Supported by the Ministry of Education, Youth and Sports of the Czech Republic (Grant No. MSM 6046070904 – Information and knowledge
support of strategic control and No. 2C06004 – Information and knowledge management – IZMAN).

SCIENTIA AGRICULTURAE BOHEMICA, 39, 2008, Special Issue 1: 92–96 93

Estimated (or Predicted) External Quality is the
quality that is estimated or predicted for the end software
product at each stage of development for each quality char-
acteristic, based on knowledge of the internal quality.

External Quality is the totality of characteristics of
the software product from an external view. It is the qual-
ity when the software is executed, which is typically meas-
ured and evaluated while testing in a simulated environ-
ment with simulated data using external measures. During
testing, most faults should be discovered and eliminated.
However, some faults may still remain after testing. As it
is difficult to correct the software architecture or other
fundamental design aspects of the software, the fundamen-
tal design usually remains unchanged throughout testing.

Quality in Use is the user’s view of the quality of the
software product when it is used in a specific environment
and a specific context of use. It measures the extent to
which users can achieve their goals in a particular environ-
ment, rather than measuring the properties of the software
itself.

Model for software product quality have two-part:
a) Internal quality and external quality, and
b) Quality in use.

The first part of the model specifies six characteristics
for internal and external quality, which are further subdi-
vided into subcharacteristics. These subcharacteristics are
manifested externally when the software is used as a part
of a computer system, and are a result of internal software
attributes. The second part of the model specifies four
quality in use characteristics, but does not elaborate the
model for quality in use below the level of characteristics.
Quality in use is the combined effect for the user of the six
software product quality characteristics. The characteris-
tics defined are applicable to every kind of software, in-
cluding computer programs and data contained in
firmware. The characteristics and subcharacteristics pro-
vide consistent terminology for software product quality.
They also provide a framework for specifying quality re-
quirements for software, and making trade-offs between
software product capabilities.

USING A QUALITY MODEL

Software product quality should be evaluated using
a defined quality model. The quality model should be used
when setting quality goals for software products and in-
termediate products. Software product quality should be
hierarchically decomposed into a quality model composed
of characteristics and subcharacteristics, which can be
used as a checklist of issues related to quality. It is not
practically possible to measure all internal and external
subcharacteristics for all parts of a large software product.
Similarly it is not usually practical to measure quality in
use for all possible user-task scenarios. Resources for
evaluation need to be allocated between the different types
of measurement dependent on the business objectives and
the nature of the product and design processes. Their needs
are to achieve specified goals with effectiveness, produc-
tivity, safety and satisfaction.

QUALITY MODEL FOR QUALITY IN USE

This clause defines the quality model for quality in use.
The attributes of quality in use are categorized into four char-
acteristics: effectiveness, productivity, safety and satisfaction.
Quality in use is the user’s view of quality. Achieving qual-
ity in use is dependent on achieving the necessary external
quality, which in turn is dependent on achieving the necessary
internal quality. Measures are normally required at all three
levels, as meeting criteria for internal measures is not usually
sufficient to ensure achievement of criteria for external meas-
ures, and meeting criteria for external measures of subchar-
acteristics is not usually sufficient to ensure achieving criteria
for quality in use.

QUALITY IN USE

The capability of the software product to enable speci-
fied users to achieve specified goals with effectiveness,
productivity, safety and satisfaction in specified contexts
of use. Quality in use has following four characteristics:

Effectiveness

The capability of the software product to enable users
to achieve specified goals with accuracy and completeness
in a specified context of use.

Productivity

The capability of the software product to enable users
to expend appropriate amounts of resources in relation to
the effectiveness achieved in a specified context of use.

Safety

The capability of the software product to achieve ac-
ceptable levels of risk of harm to people, business, soft-
ware, property or the environment in a specified context
of use.

Satisfaction

The capability of the software product to satisfy users
in a specified context of use.

QUALITY MODEL FOR EXTERNAL AND INTERNAL
QUALITY

This clause defines the quality model for external and
internal quality. It categorized software quality attributes
into the following six characteristics:

Functionality

The capability of the software product to provide func-
tions, which meet, stated and implied needs when the soft-
ware is used under specified conditions.

94 SCIENTIA AGRICULTURAE BOHEMICA, 39, 2008, Special Issue 1: 92–96

Reliability

The capability of the software product to maintain
a specified level of performance when used under speci-
fied conditions.

Usability

The capability of the software product to be under-
stood, learned, used and attractive to the user, when used
under specified conditions.

Efficiency

The capability of the software product to provide ap-
propriate performance, relative to the amount of resources
used, under stated conditions.

Maintainability

The capability of the software product to be modified.
Modifications may include corrections, improvements or
adaptation of the software to changes in environment, and
in requirements and functional specifications.

Portability

The capability of the software product to be transferred
from one environment to another.

Each characteristic is divided into several sub-charac-
teristics. Let us list the functionality sub-characteristics ac-
cording the standard (ISO/IEC 9126) and at a rough some
subsets of possible measures for each characteristic.

SUBCHARACTERISTIC FOR FUNCTIONALITY

This characteristic is concerned with what the software
does to fulfill needs, whereas the other characteristics are
mainly concerned with when and how it fulfils needs. For
a system, which is operated by a user, the combination of
functionality, reliability, usability and efficiency can be
measured externally by quality in use.

Suitability

The capability of the software product to provide
an ppropriate set of functions for specified tasks and user
objectives.

Accuracy

The capability of the software product to provide the
right or agreed results or effects with the needed degree of
precision.

Interoperability

The capability of the software product to interact with
one or more specified systems.

Security

The capability of the software product to protect infor-
mation and data so that unauthorised persons or systems
cannot read or modify them and authorised persons or sys-
tems are not denied access to them.

Functionality compliance

The capability of the software product to adhere to
standards, conventions or regulations in laws and similar
prescriptions relating to functionality.

MEASURES FOR FUNCTIONALITY

Following is the decomposition of the characteristic
FUNCTIONALITY in sub-characteristics and for each
sub-characteristic are indicated the measures to be used
for the evaluation.

Measures for SUITABILITY

Functions available ratio
Functional specification change ratio
Precision of Input-Output definition ratio
Project documentation ratio
Product documentation ratio

Measures for ACCURACY

Significant digits ratio
Volume of code ratio
Correctness ratio

Measures for INTEROPERABILITY

Communicate-ability ratio
Matched data format ratio
Matched character ratio

Measures for SECURITY

Software access control ratio
Data access control ratio
Ciphered data ratio
Access history ratio
Data corruption ratio
Detected abnormal operation ratio

Measures for COMPLIANCE

Compliance with (project) software development stand-
ards ratio
Compliance with (project) documentation standards ratio
Standardised data format ratio
Standardised character ratio

SCIENTIA AGRICULTURAE BOHEMICA, 39, 2008, Special Issue 1: 92–96 95

RESULTS AND DISCUSSION

NEW SUBCHARACTERISTIC PROPOSAL

One of the phenomena of mass expansion of informa-
tion technology is the development and expansion of
 software product, which is commonly used by huge user
community. Examples of such products are commer cial-
of-the-self software products. Maintaining and servicing
such products is often supported by special software which
uses a private network or the Internet to inform the team
responsible for maintenance about all problems and fail-
ures during the product usage in the whole users commu-
nity. These messages are usually send in the client server
mode from the users towards the maintenance team. This
team or developers send users information, such as warn-
ings about possible problems, ways to avoid or temporar-
ily solve possible problems and about future plans of error
fixes. Such information is extremely useful for users.

The service described in the paragraph above can
be regarded as a special functionality feature. It is rea-
sonable to regard it as a special subcharacteristic of
functionality, with a close direct influence to the reli-
ability and maintainability quality characteristic.

This discussion leads to a proposal of a new function-
ality subcharacteristic with the draft name ”Users moni-
toring and cooperation”.

The proposed definition of this subcharacteristic is the
following:

Users monitoring and cooperation

The capability of the of-the-self software product to
provide the level of the ability of the software to be cen-
trally monitored by the maintenance centre and commu-
nicate with other copies of the same software product on
private network or Internet.

SOME ATTRIBUTES AND MEASUREES PROPOSAL

In this paragraph we try to outline the same possible
external and internal attributes for a new subcharacteristic
and suggest some possible new measures.

Proposed external attributes and measures

Communicated failures ratio

The ratio of the number of problems (failures) during
the specified time period which are automatically com-
municated by a special monitoring software to a central
maintenance point, to a number of all problems that oc-
curred during the specified time period.

This measurement is an absolute scale type, and can
be evaluated during the exploitation stage of the product
life cycle. The alternative measure of such attribute can be
suggested when we do not count individual failures but

only the number of different type of failures (due to the
same fault).

User and maintainer information sharing ratio

The ratio of the of the number of failure report from
different users, which are published in the open real time
accessible document (for example www page) and the
number of all failure reports monitored by maintainer.

This measurement is an absolute scale type, and can
be evaluated during the exploitation stage of the product
life cycle. The alternative measure of such attribute can be
suggested when we do not count individual failures but
only the number of different type of failures (due to the
same fault).

The central warning density

The number of warnings sent from a central mainte-
nance point to all registered product users divided by the
time duration of monitoring.

This measurement is a ratio scale type and can be
evaluated from the monitoring protocol recording on the
central maintenance point. The alternative measure is the
same number divided by the software size, which is meas-
ured by the appropriate software complexity measure (for
example LOC).

Mean supplier reaction time

The average time between the message about a prob-
lem sending from the user to central maintenance point
and the time when the message with appropriate warning
and information how to avoid problem is send to all prod-
uct users, counted in the monitoring time period.

This measurement is a ratio scale type and can be
evaluated from the monitoring protocol recording on the
central maintenance point. The alternative measure is the
same number divided by the software size, measured by
the appropriate software complexity measure (for example
LOC). Another alternatives can be obtained by replacing
the arithmetic mean by the median or some other aggrega-
tion operator.

Proposed internal attributes and measures

Implementation of failure communication ratio

The ratio between the number of points in the program
code, where the automatic report about the failure is im-
plemented to all points in the program code, where failure
can occur.

This measurement is an absolute scale type, and can
be evaluated during the design stage of a software life cy-
cle. The source of data can be design documents and
source code of software. The measure value can be used
as a predictor for the Communicated failures ratio external

96 SCIENTIA AGRICULTURAE BOHEMICA, 39, 2008, Special Issue 1: 92–96

measure in the variant when only different types of failures
with the same source faults are counted.

Implementation of failure publicity service ratio

The ratio between the number of points in program
code when the failure reports from individual users are
draft on the open real time accessible document to all
points where the reports about failures are collected for
maintainer.

This measurement is an absolute scale type, and can
be evaluated during the design stage of a software life cy-
cle. The source of data can be design documents and
source code of software. The measure value can be used
as a predictor for the external measure value User and
maintainer information sharing ratio.

Failure monitoring implementation density

The number of program points in the source code,
where the automatic collection of possible failures is im-
plemented, divided by the software size, measured by the
appropriate software complexity measure (for example
LOC). This measurement is a ratio scale type and can be
evaluated from design documents and source code of soft-
ware.

Of course the list of possible attributes for the sug-
gested subcharacteristic is not comprehensive.

CONCLUSION

The possible adding of a new subcharacteristic “Users
monitoring and cooperation” to a software quality model
can contribute to more complex evaluation of modern soft-
ware product with the broad implications. Evaluation of
such quality aspects can help to the development of soft-
ware with a lower risk to the damages due to software
failures.

REFERENCES

GILLES, A. C.: Software Quality, Theory and Management.
Chapman & Hall 1992.

ISO/IEC 9126: Information technology – Software product
 quality.

ISO/IEC 14598: Information technology – Software product
evaluation.

ISO/IEC 2500n: Quality Management Division.
ISO/IEC 25051: Software Engineering – Software product eval-

uation – Requirements for quality of Commercial Off The
Shelf software product (COTS) and instructions for testing.

VANÍČEK, J.: Měření a hodnocení jakosti informačních systémů.
Praha, ČZÚ 2000.

Received for publication on January 14, 2008
Accepted for publication on March 3, 2008

KARDOŠ, D. (Česká zemědělská univerzita, Fakulta provozně ekonomická, katedra informačního inženýrství, Praha,
Česká republika):
Dynamické zajištění kvality softwaru.
Scientia Agric. Bohem., 39, 2008: 92–96.

Článek popisuje princip navrhovaného dynamického zajištění kvality softwaru pomocí zavedení hodnocení doposud
nehodnocené vlastnosti softwarového produktu. Stávající pohled na kvalitu softwaru je definován zejména dosažením
specifikovaných vhodných charakteristik jakosti s tím, že se bere v úvahu účel používání softwarového produktu. Ten-
to koncept kvality má statický charakter. Při použití stávajícího modelu kvality se sice vyžaduje po provedení hodno-
cení naplánovat následující termín zkoušky, ale průběžně kvalita v období mezi dvěma zkouškami není sledována.
G i l l e s (1992) uvádí, že kvalita je „přehlédnutelná, když ji navrhujeme, ale snadno rozpoznáme, když chybí“. Tento
závěr vychází z jednoduché myšlenky, že není možné správně předvídat všechny okolnosti, a proto specifikace všech
potřeb a požadavků na charakteristiky kvality nemusí být vhodná. Z tohoto důvodu může být zítřejší pohled na kvalitu
softwarového produktu jiný než dnešní. Autor proto navrhuje zavedení nové subcharakteristiky v rámci charakteristiky
jakosti funkčnost. Tato subcharakteristika byla pojmenována „Sledování a spolupráce s uživateli“ a je definována jako
úroveň schopnosti masově rozšířeného komerčního softwarového produktu být centrálně sledován centrem údržby
a spolupracovat s dalšími kopiemi téhož produktu prostřednictvím privátních sítí nebo internetu. Doplněním nové
subcharakteristiky funkčnosti vytvoříme z původně statického modelu model dynamický. Přínosem tohoto doplnění
může být minimalizace doby mezi časem, kdy problém s kvalitou nastane, a časem, kdy uživatelé jsou informováni
o problému nebo navrhovaných opatřeních. To může vést ke snížení případných škod u uživatelů.

dynamické zajištění kvality softwaru; kvalita softwarového produktu; míry pro sledování a spolupráci s uživateli

Contact Address:

Ing. Daniel K a r d o š , Česká zemědělská univerzita v Praze, Fakulta provozně ekonomická, katedra informačního inženýrství,
Kamýcká 1076, 165 21 Praha 6-Suchdol, Česká republika, tel.: +420 774 061 028, e-mail: kardos@pef.czu.cz

