
SCIENTIA AGRICULTURAE BOHEMICA, 39, 2008, Special Issue 1: 61–76 67

TRANSFORMATION OF RELATIONAL DATABASE MODELS
INTO OBJECT-ORIENTED DATABASE MODELS

V. Holub

Czech University of Life Sciences, Faculty of Economics and Management, Department of
Information Engineering, Prague, Czech Republic

This paper presents a method to transform relation database models into object ones. Unlike other papers and works, we use stan dard
technologies and tools and show that even poorly designed relational data model may be automatically adjusted and then transformed.
We also present an UML extension to support the transformation. Available outputs also include an entity-relation model.

MDA; UML; OCL; transformation rules; mapping; entity-relationship; semantic enrichment

INTRODUCTION

Database Systems

Database systems (DS) generally serve one common
purpose: information storage and retrieval. From the in-
formation-system viewpoint, database systems provide
these services to other subsystems through a defined in-
terface, which (to certain extent) decouples means of DS
integration from an internal database management system
(DBMS) implementation.

A crucial factor that determines capabilities (in respect
to quality of provided services) of a DS is a data meta-
model (DMM). Since first DS appeared, many different
DBMSs were developed. However, within a given DMM
only relatively minor distinctions between DBMSs exist.
On the other hand, when aiming for a different DMM,
DBMS must be completely re-engineered. This principle
also applies for interfaces.

In respect to a data model, we commonly distinguish
two kinds of database systems:
• relational DSs (RDSs),
• object DSs (ODSs).

Formally, interfaces are represented by a language,
each having its syntax and semantics. For RDSs and
ODSs, the interface languages are SQL (data-modification
DML part) and a subset of an object-oriented language
(preferably the one that other, integrated subsystems, are
written in), respectively.

In order to overcome one of many drawbacks that lim-
its RDSs usage (i.e. discrepancy between reality-close
object-oriented paradigm in present programming lan-
guages and outdated relational DMM, known as
a “semantic gap”), some relational DSs are equipped with
a mapping layer that performs real-time conversion be-
tween a DBMS-native relational interface and an outer
interface that complies with object-oriented paradigm.
These DSs, however, are still to be considered relational.

DMMs that preceded relational DMM (RDMM) and
object DMM (ODMM), namely hierarchical and network
DMMs, are beyond scope of this paper.

Database Systems Transformation

Presently available works (A l h a j j , 2003; A n -
d e r s s o n , 1994; H a i n a u t , 1998; P r e m e r l a n i ,
B l a h a , 1993, among others) that deal with DS or data
model (DM) transformation address partial issues only, not
the problem domain as a whole. In general, to success-
fully transform a data model, following these basic steps
is inevitable:
1. Obtain source relational DM (RDM).
2. Enrich source RDM in order to increase its seman-

tics.
3. Transform RDM to object DM (ODM), using informa-

tion gathered in semantic enrichment.
Some of techniques applicable to fulfilling step 2 are

explored by a discipline of reverse engineering (RE). For
ODM creation, loss-free mapping shall be used. Steps 2
and 3 put together form a process that is a logical opposite
to a forward-wise relational database design (semantic
enrichment produces information once lost, mapping out-
puts become inputs and v.v.).

Relational Database Systems in Real Life

Relational data models that are commonly employed
in enterprise environment are rarely available in form suit-
able for transformation. However, any of works mentioned
above simply puts well-designed data model as a pre-
requisite. Such a requirement turns out to be unrealistic in
real world.

Common violations of design principles may include
(according to B l a h a , P r e m e r l a n i , 1995; H a i n -
a u t , 1998; P e t i t et al., 1994; P r e m e r l a n i , B l a -
h a , 1993):
• massive denormalization done in favor of perform-

ance,
• poor design resulting from frequent data model up-

dates that are performed by unqualified personnel or
under time pressures,

• implicit data structures that are modeled outside data
model (e.g. in application layer),

68 SCIENTIA AGRICULTURAE BOHEMICA, 39, 2008, Special Issue 1: 61–76

• presence of data structures that are unrelated to mod-
eled domain (e.g. irrelevant technology constructs),

• etc. …
Applying some of existing methods (sources above)

leads to unexpected results and design flaws of source DM
propagate to DM.

MATERIAL AND METHODS

Key requirements of the transformation method were
set as follows:
• use standard and proven tools and techniques with

widespread knowledge and usage of,
• make transformation as transparent as possible (i.e.

define steps with clear inputs, transformations and out-
puts; put in a flow, these steps shall constitute the
transformation process),

• avoid excessive user interaction,
• if possible, create a technology-independent domain

model that may be subsequently used for further main-
tenance and development of the system that is being
transformed.
Tools and techniques that take part in the proposed

transformation process include: modeling language that is
not limited to one particular metamodel or is extendible to
fit needed metamodels, model transformation framework

(either self-developed or generally available), modeling
environment that supports user-defined transformations
(i.e. suitable CASE tool), and a language to express trans-
formation rules. To avoid possible incompatibility threat,
most of these we picked from a portfolio provided by
OMG (Object Management Group) – namely transforma-
tion framework, modeling and transformation language.

MDA Framework

MDA (Model Driven Architecture) is mostly used in en-
terprise segment to deal with large and complex IS infrastruc-
ture that needs to be updated frequently. The general idea is
that a vast effort is inadequately spent projecting business
needs into program code. During the development process,
many intermediate artifacts (models) are created, which are
later difficult and expensive to maintain. To speed up and ease
the initial development and further maintenance, MDA intro-
duces a framework that allows automated transitions between
models on different levels of abstraction (LOA). Three dif-
ferent LOAs are defined – computation independent model
(CIM), platform independent model (PIM) and platform spe-
cific model (PSM). In UP (Unified Process) terminology, the
models correspond to business, analysis and design models,
respectively.

Mapping of cross-level elements is specified at a meta-
model (MM) level. Hence, the transformation is meta-

Obtain RDM

RDM

Semantically enrich
RDM

Enriched RDM

Transform RDM to ODM

ODM

Fig. 2. Transformation process (simplified)

RDS

Generic
SQL

ODS

Generic
ODS
Interface

DS DMM

RDMM ODMM

metamodelmetamodel

metamodel

Fig. 1. Database systems

SCIENTIA AGRICULTURAE BOHEMICA, 39, 2008, Special Issue 1: 61–76 69

model based. However, moving from each LOA to a more
concrete one, additional information must be provided in
order to allow refinement of the output model. Such infor-
mation is called mark. Using mapping defined on meta-
model level and the source model enriched by marks,
unambiguous and clear automatic transformation is
achieved.

Developing a DM requires LOAs no less than develop-
ing any other software applications. First, an entity-rela-
tion model (ERM) is created, followed by a logical DM
(LDM) and finally completed by a physical DM (PDM).
We state, there is a parallel between ERM and CIM, LDM
and PIM, and PDM and PSM. LOAs definitions show that
our statement fits MDA perfectly.

Note: In database DM transformation, we will traverse
from a lower LOA (RDM) to higher LOA (ODM). Still,
we will need to semantically enrich the RDM. This is be-

cause RDMM contains very little information (it barely
evolved over time, while programming languages along with
ODS did).

UML Models

Although mainly used as a mere diagramming notation,
UML’s (Unified Modeling Language) semantic power is best
visible when used along with MDA architecture. As a soft-
ware modeling language, it contains elements that may
fully describe a software structure and behavior. Having
adopted use cases and business modeling elements, it can
also be used to model at the CIM level. Elements of
(meta)models of different LOAs may relate via dependen-
cies, tracking CIM elements down to PSM elements.

Primary goal of UML is to provide means of modeling
an application layer of a system. It contains packages of

Transformation

Source Model

Target Model

Source
Metamodel

Target
Metamodel

Transformation
Marks

Transformation
Rules

consists of elements of

contains elements of

semantically enrich source model

CIM

PIM

PSM

ERM

Generic RDM Generic ODM

Vendor-specific
RDM

Vendor-specific
ODMcorrespond to

correspond to

corresponds to

Fig. 3. MDA transformation

Fig. 4. MDA abstraction levels

70 SCIENTIA AGRICULTURAE BOHEMICA, 39, 2008, Special Issue 1: 61–76

elements, each dedicated to a different aspect of a software
product. However, UML core may be easily extended by
different mechanisms (importing user-defined packages,
which we use, is one of them). Thus, support of modeling
DM structure may be added by a package import. We de-
fine a custom package Relations which holds elements
corresponding to RDMM elements.

Also, for functional dependencies modeling (see be-
low) we added package FunctionalDependencies, which
appends to UML core the same way.

As object databases (e.g. O2, Jasmine, Caché) reuse
the object model, known from object-oriented program-
ming languages, for its data model, no additional exten-
sion to support ODMM is necessary. In fact, only a very
limited subset of UML Kernel package elements is used
to specify an ODMM.

As for the marks that semantically enrich models, we
use UML tags to store such additional information into.
Each mark has a name and value. Each piece of semantic
enrichment type (e.g. generalization type, see later) has
a dedicated tag name. Corresponding value further speci-
fies semantic enrichment value (e.g. tag GenParentName
states that a given RelationSchema takes part in a gener-
alization relationship with its parent (more general Rela-
tionSchema) name stored as a tag value).

OCL Transformations

OCL (Object Constraint Language) is an extension to
UML that provides means to further specify required soft-
ware structure and behavior by adding expressions to
UML elements (e.g. methods). By definition, OCL expres-

DBSchema

AttributeRelationSchema

Key

primaryKey: Boolean

ForeignKey

StructuralFeature
Property

Classifier
Class

name: String

Namespace
PackageableElement

Package

Namespace
RedefinableElement

Type
Classifier

class ownedAttribute

0..*

referencedKey

1

referencingKey

0..*

key

0..*
{redefines
namespace}

keyMember

1..* {ordered}
{subsets member}

ownedKey
0..*
{ordered}

relationSchema 1

ownedRelationSchema 1..*

1

relationSchema

1
{subsets class}

ownedAttribute

1..* {ordered}
{subsets
ownedAttribute}

keyMember 1..* {ordered}

foreignKey 0..*

Fig. 5. Relations package

SCIENTIA AGRICULTURAE BOHEMICA, 39, 2008, Special Issue 1: 61–76 71

sions are limited to query operations. Yet, any object
method (including non-query) may be defined by its pre-
conditions and post-conditions. For MDA usage, various
tools exist to transform OCL expressions present in PIM
model to a language-specific code.

Although OCL is not a transformation language, it
may well be used as a platform-independent specification
of transformation routines. OCL precondition states what
condition must be fulfilled to start the transformation step,
while OCL post-condition defines what element is to be
created in that case. Following example OCL code speci-
fies that each relation (referred to as relation schema) in
source PIM model becomes an entity of the same name in
target CIM model:

pre:
ERModel.Entity.allInstances()–>isEmpty() and
RelationModel.RelationSchema.allInstances()–>notEmpty()

post:
RelationModel.RelationSchema.allInstances()–>iterate(rs |
Let newEntity = Entity.oclIsNew() in
newEntity.owningElement = ERModel and
newEntity.name = rs.name)

OCL expressions shall be translated to a language na-
tive to an MDA transformation tool.

Transformation Process

The transformation process comprises of two subse-
quent flows, each split into steps.

The initial flow normalizes and consolidates the source
RDM so that it is well-designed and ready for transforma-
tion into ODM. It may be omitted if a well-designed RDM
is available. It consists of following steps:
1. Remove irrelevant structures
 Such structures are irrelevant to the universe of dis-

course and shall be excluded from transformation in-
put. We use tag Abandoned of a Boolean type – when
set true on a RelationSchema, its holder is excluded
from further transformations.

2. Recover implicit keys
 In a real-life RDM, candidate and/or foreign keys

might be omitted in RelationSchema declaration – data

consistency is then maintained outside DS (e.g. in ap-
plication layer). However, candidate keys are crucial
for functional dependencies analysis and therefore
shall be recovered. As we aim for as much automation
as possible, we propose to use all three possible enrich-
ment information sources that are known to us: ap-
plication-layer database queries, DDL declarations that
may be mined for more queries (e.g. views definitions)
and data itself. The first two turn out to be valuable
sources of both candidate and foreign keys, while the
latter serves to verify hypotheses of attributes being
constituents of candidate keys. Generally, attributes
receive (either automatically or by user interaction)
various tags that suggest their membership in a key,
and the order within one.

3. Define functional dependencies
 Due to the fact that data analysis that would lead to

a finite set of functional dependencies is enormously
resource-intensive, we propose that user marks de-
pendencies in the extent that his knowledge of a par-
ticular DM allows. The routines performed on data
basis then serve to verify whether hypotheses stated by
user are true or not. FDDependant tag identifies an at-
tribute that functionally depends on a set (possibly of
one member only) of attributes, which are in turn
tagged FDDeterminant (each having its order as
a value).

4. Normalize
 While steps 1–3 only added information to a particular

RDM, normalizing changes the RDM structure by
means of creating new relation schemata and moving
attributes from one to another (that is newly created).
We use the algorithm of decomposition to produce new
schemata. Both checks for actual highest normal form
achieved and transformation rules are expressed in
OCL.

The next and final flow performs the transformation of
RDM into ER model and then further into ODM. Steps
are:
1. Create ERM
 Since ERMM contains a very limited set of elements

compared to conceptual ERM (or the ultimate ODM),

Attribute Determinant

PartialFunctionalDependency DirectedRelationship
PackageableElement

Dependency

RelationSchema

Key

primaryKey: Boolean

ownedKey 0..* {ordered}

relationSchema

1

key
0..*

keyMember

1..* {ordered}

relationSchema

1

ownedAttribute

1..* {ordered}

determinantMember

1..* determinant

0..*

determinant
1
{redefines supplier}

dependency 1..*

dependency

*

dependant

1
{redefines cl ient}

Fig. 6. Functional Dependencies package

72 SCIENTIA AGRICULTURAE BOHEMICA, 39, 2008, Special Issue 1: 61–76

simple element-to-element mapping alone would not
produce a well-designed ERM (nor ODM). Transfor-
mation therefore splits into four sub-steps:

 i) Map source elements to equivalent target ele-
ments

 Relation schemata map to entities and attributes to
entity attributes (features of both are preserved).
Moreover, all foreign keys need to be transformed
into binary association. The association end of the
entity, which originated from the relation schema
“owning” the foreign key, is assigned cardinality
of many, while the opposite end has cardinality of
one instead. Finally, the attributes that once ap-
peared in foreign keys, are removed from a target
model.

 ii) Replace relation schemata that act as many-to-
many “links” with associations

 Newly created entities that possess no entity at-
tribute are necessarily “remnants” of link relation
schema. The reason is that no relation schema
would pass the 1NF (first normal form) check if
there was no attribute to set a primary key on. For
these entities, mapping to associations applies so
that any adjacent associations disappear in favor of
a new one. Cardinality of both association ends is
set to many.

 The same principle is applicable to entities with no
identifier (an element equivalent to primary key in
RDMM) but at least one attribute. The forthcoming
association obtains association attributes derived
from attributes of an extinct entity.

 iii) Detect and create generalizations
 RDMs may implement generalizations in three dif-

ferent ways depending on number of successor
types and number of instances (tuples) of each suc-
cessor.

 We define an isomorphic generalization when all
tuples reside a single relation schema which con-
tains a union of all successors’ (and predecessor’s)
attributes. User is to mark attributes with dedicated
tag IsoChildName whose value specifies the in-
tended name of a new child entity, and a tag Iso-
ParentName whose value specifies its predecessor.
For each distinct IsoChildName, a new entity with
corresponding attributes is created. The generaliza-

tion relationship is also created, having a new en-
tity at its specific end, and the existing entity (or
even another new one) at its general end. No auto-
mation is proposed for detecting such a generaliza-
tion (might be based on data analysis) since too
many false generalizations would be suggested.

 We define a structured generalization when a rela-
tion schema, which fits the most general “entity”
(not to be confused with an entity element in
ERMM), is integrated into inter-relation relation-
ships (foreign keys). Children to such an “entity”
occupy the same relation schema, but attributes
specific to each child “entity” are stored in separate
relation schemata, which are only linked (via
 foreign keys) to the “master” schema. User shall
mark each entity with a tag GenParentName whose
value specifies its parent entity. Based on this tag,
generalizations are created, replacing existing as-
sociations. Proposed automation benefits from the
fact that even that the foreign key represents one-
to-many relationship, the actual cardinality observ-
able on data is one-to-one (in RDM, foreign key
attributes are primary key attributes at once).

 We define an independent generalization when all
distinct entities reside in different relation sche-
mata with no relationship between (in fact, rela-
tionships are possible, but none represent gener-
alization). Each relation schema just fits an entity
within. Child entities (in an ERM) are tagged Ind-
ParentName with a name of its parent in the tag’s
value. Based on this tag, generalizations are pro-
duced, but not at the expense of existing associa-
tions. Detection automation makes use of the fact
that all relation schemata that take part in the gen-
eralization tree have a set of common attributes
(i.e. common name and type) that form their pri-
mary keys. Moving the tree downwards (to “leaf”
schemata), the number of non-key attributes that
are common to several schemata increases. Follow-
ing this principle, the whole tree may be restored.

2. Create ODM
 Since class-based object databases (in contrary to those

with more or less adjusted metamodel, e.g. Gemstone
or various XML-based databases) reuse a mere portion
of UML class metamodel, so do we for the target

Remov e Irrelev ant
Structures

Recover Implicit Keys Define Functional
Dependencies

Normalize

Original RDM Consolidated &
Normalized RDM

Fig. 7. 1st process flow

SCIENTIA AGRICULTURAE BOHEMICA, 39, 2008, Special Issue 1: 61–76 73

Map Matching
Elements

Replace Link
Schemata with
Associations

Detect and Create
Generalizations

ERM
necessary?

Create ERM Create ODM

Consolidated &
Normalized RDM

Semantically
Enriched RDM

ERM ODM

[ERM not created]
[ERM created]

[no]

[yes]

ODMM. From the database perspective, the semantic
power of ODMM is nearly the same as of the ERMM.
Having the ERM finished, we take its elements as in-
puts into plain mapping to ODM. Considering that the
user is expected to further refine the resulting ODM on
his own, for his own purposes, we recommend doing
alterations to ODM after being generated. The idea is
that since ODS persistence is transparent, the user
should refine the ODM so that it is usable even for the
application-layer data model. Developing methods and
defining precise constraint is recommended.

The ERM however seems to become outdated soon, if
it is not already. Our experience suggests that the majority
of business and system analyses today use a UML Classes
package for static conceptual modeling. The benefit is that
the analysis model is compliant with the design model
(which may be created by refining the former) and also the
project team members are not required to master two dif-
ferent paradigms.

If the user chooses to skip the ER model for whatever
reason, the straight PIM to PIM (i.e. RDM to ODM) trans-
formation may be carried out applying adjusted transfor-
mation rules and leaving out the intermediate CIM model
(i.e. ERM).

Example Transformation

Here in a simple example we show a source RDM,
describe application of many transformation steps, and
present the resulting ODM (no intermediate ERM model
will be created). The RDM is a part of a IS used to report

document assignment to workers in order to control their
performance. The structure is as follows:

Apparently, the DOCUMENTS_LOAD relation is ir-
relevant from the transformation viewpoint. Thus, user
marks it Abandoned so that it is excluded from further
transformations.

Secondly, application code is mined for equi-joins to
verify that all foreign keys are explicit. There is an un-
matched join found: ... FROM PERSON P, DOCUMENT
D WHERE P.ALIAS = D.RESPONSIBLE AND P.IS_AC-
TIVE = 1. A possible foreign key is presented to user for
approval, which is granted. Appropriate transformation
marks are placed.

Next, user marks groups of attributes that he suspects
to be candidate keys. In this case, user marks one group:
PERS_DOC.{ALIAS; DATE_STARTED; DATE_FIN-
ISHED}. An SQL statement counting records with distinct
candidate key members is build to be executed by user. If
such a statement evaluated to the total count of records in
table, there would be no two distinct records having the
group of tested attributes equal, and the hypothesis would
pass. However, the expression evaluates to a lower number
meaning that the group of attributes is not a candidate key.
No transformation marks are placed in this step.

Another user hypothesis testing is involved in search
for functional dependencies. User’s knowledge suggests
that in DOCUMENT relation, TEMPLATE_NAME and
ISSUED_BY might be dependent on TYPE. A set of SQL
statements is constructed to test partial functional depend-
encies (i.e. each possible dependant, one by one) by count-
ing records with equal determinant members and distinct
dependant. If the statement evaluated to zero for all de-

Fig. 8. 2nd process flow

74 SCIENTIA AGRICULTURAE BOHEMICA, 39, 2008, Special Issue 1: 61–76

pendant members, then the hypothesis would be verified.
In this case, only TEMPLATE_NAME was found depend-
ant on TYPE, rendering user hypothesis false as a whole,
but right for one dependant member. For this member,
transformation marks were placed.

Using added transformation marks, the RDM is trans-
formed into normalized and consolidated one: all relation
schemata that are not to be “abandoned” are transported
into new model, implicit keys are reconstructed and the
schema is normalized up to BCNF. Normalizing produces

1 new schema in this case, as DOCUMENT relation failed
the 2NFCompliant() OCL test.

Having the RDM normalized and consolidated, we
proceed to ODM derivation. First, target elements are cre-
ated as described in the previous chapter: relation sche-
mata map to classes (attributes are preserved) and foreign
keys map to associations. There is one class in the ODM
(PersDoc) that served as a “link“ in the RDM (no ex-pri-
mary key attributes other than those being part of foreign
keys) which must be further transformed into an associa-

DOCUMENTS_LOAD

DOCUMENT

column
*PK REFERENCE_NO: VARCHAR2(50)
 DATE_FILED: DATE
 RESPONSIBLE: CHAR(8)
 TYPE: NUMBER(3)
 TEMPLATE_NAME: VARCHAR2(50)
 ISSUED_BY: VARCHAR2(50)
 PROCESSED: CHAR(1)
 COMMENT: VARCHAR2(2000)

PERSON

column
*PK ALIAS: CHAR(8)
 IS_ACTIVE: CHAR(1)

PERS_DOC

column
*pfK ALIAS: CHAR(8)
*pfK REFERENCE_NO: VARCHAR2(50)
 DATE_STARTED: DATE
 DATE_FINISHED: DATE

+FK_PERS_DOC_DOCUMENT 0..*

(REFERENCE_NO = REFERENCE_NO)

«FK»

+PK_DOCUMENT 1

+FK_PERS_DOC_PERSON 0..*

(ALIAS = ALIAS)

«FK»

+PK_PERSON 1

Fig. 9. Source RDM

DOCUMENT

column
*PK REFERENCE_NO: VARCHAR2(50)
 DATE_FILED: DATE
 FK RESPONSIBLE: CHAR(8)
 FK TYPE: NUMBER(3)
 ISSUED_BY: VARCHAR2(50)
 PROCESSED: CHAR(1)
 COMMENT: VARCHAR2(2000)PERSON

column
*PK ALIAS: CHAR(8)
 IS_ACTIVE: CHAR(1)

PERS_DOC

column
*pfK ALIAS: CHAR(8)
*pfK REFERENCE_NO: VARCHAR2(50)
 DATE_STARTED: DATE
 DATE_FINISHED: DATE

DOCUMENT_TYPE

column
*PK TYPE: NUMBER(3)
 TEMPLATE_NAME: VARCHAR2(50)

+FK_DOCUMENT_DOCUMENT_TYPE

0..*
(TYPE = TYPE)

«FK»

+PK_DOCUMENT_TYPE

1

+FK_DOCUMENT_PERSON

0..*
(RESPONSIBLE = ALIAS)

«FK»

+PK_PERSON

1

+FK_PERS_DOC_DOCUMENT 0..*

(REFERENCE_NO = REFERENCE_NO)

«FK»

+PK_DOCUMENT 1

+FK_PERS_DOC_PERSON 0..*

(ALIAS = ALIAS)

«FK»

+PK_PERSON 1

Fig. 10. Updated RDM

SCIENTIA AGRICULTURAE BOHEMICA, 39, 2008, Special Issue 1: 61–76 75

tion class. This part of transformation is fully automated
and as such it does not require user intervention.

The last step requires user to mark generalizations. In this
case, user identifies an isomorphic generalization in class
Document. He learned that only external inquiries might be
commented, also that issuer and “processed” status is tracked
in non-inquiring external legal documents only and that type
and template are only defined for internal documents. Thus
he suggests 3 new classes to become subtypes of a Document
class by placing appropriate marks. Then, the automatic
transformation is carried out, which produces the final ODM.
Further fine-tuning is possible.

Document

Comment: Text
DateFiled: Date
IssuedBy: Text
Processed: Text
ReferenceNo: Text

Person

Alias: Text
IsActive: Text

PersDoc

DateFinished: Date
DateStarted: Date

DocumentType

TemplateName: Text
Type: Number

document1

*

person

*

responsible

1

document

*

document

*

type

1

Document

DateFiled: Date
ReferenceNo: Text

Person

Alias: Text
IsActive: Text

PersDoc

DateFinished: Date
DateStarted: Date

DocumentType

TemplateName: Text
Type: Number

ExternalInquiry

Comment: Text

ExternalLegal

IssuedBy: Text
Processed: Text

Internal

document1

*

person

*

document *

type 1

responsible

1

document

*

During the example transformation process, following
enrichment marks have been placed:

RESULTS

Using the proposed method, one is able to obtain an ODM
with its semantic power near exploited. The intermediate en-
tity-relation model may, or may not be created. Also, the
method is applicable in real-life conditions, with no unreal-
istic assumptions put on it. User is required to possess only
basic knowledge of the universe of discourse.

Fig. 11. Early ODM

Fig. 12. Target ODM

76 SCIENTIA AGRICULTURAE BOHEMICA, 39, 2008, Special Issue 1: 61–76

REFERENCES

ALHAJJ, R.: Extracting the EER model from a legacy rela tional
database. Information Systems, Volume 28, Issue 6 (Septem-
ber), 2003, pp. 597–618.

ANDERSSON, M.: Extracting an Entity Relationship Schema
from a Relational Database through Reverse Engineering. In:
Proc. Int. Conf. on the Entity-Relationship Approach (ERA),
Manchester, 1994, pp. 403–419.

BLAHA, M. – PREMERLANI, W.: Observed Idiosyncracies of
Relational Database designs. In: Proc. 2nd IEEE Working
Conf. on Reverse Engineering, Toronto, July 1995, IEEE
Computer Society Press.

HAINAUT, J. L.: Database Reverse Engineering. In: Proc. 10th
Conf. on ER Approach, San Mateo (CA), 1998.

PETIT, J. M. – KOULOUMDJIAN, J. – BOULICAUT, J. F. –
TOUMANI, F.: Using Queries to Improve Database Reverse
Engineering. In: Proc. Int. Conf. on the Entity-Relationship
Approach (ERA), Manchester, 1994, pp. 369–386.

PREMERLANI, W. – BLAHA, M.: An Approach for Reverse
Engineering of Relational Databases. In: Proc. IEEE Working
Conf. on Reverse Engineering, 1993, IEEE Computer Soci-
ety Press.

Received for publication on January 14, 2008
Accepted for publication on March 3, 2008

Model Element Mark Value Purpose

RDM

Document. Responsible

FKSequence 1 distinguishes newly created FKs

ReferencedCKOwner Person specifies target relation schema

Referenced-CKSequence 1 specifies target key

Referenced-CKMemberSequence 1 specifies target key member

Document load Abandoned 1 exclude from transformation?

Document. Type FDDeterminant 1 determinant number (for referencing)

Document. Template name FDDependant 1 specifies determinant

ODM

Document. Comment
IsoParentName Document specifies parent

IsoSiblingName ExternalInquiry specifies owner

Document. IssuedBy
IsoParentName Document specifies parent

IsoSiblingName ExternalLegal specifies owner

Document. Processed
IsoParentName Document specifies parent

IsoSiblingName ExternalLegal specifies owner

Document. Type
IsoParentName Document specifies parent

IsoSiblingName Internal specifies owner

HOLUB, V. (Česká zemědělská univerzita, Fakulta provozně ekonomická, katedra informačního inženýrství, Praha,
Česká republika):
Transformace relačních databázových modelů do modelů objektových.
Scientia Agric. Bohem., 39, 2008: 67–76.

Tento článek popisuje metodu transformace relačních databázových modelů do objektových pomocí architektury
řízené modelem (MDA). Je popsán způsob, jak docílit požadovaných výsledků i za situace, kdy zdrojový relační model
je z nějakého důvodu nevhodně navržen. Pro úpravu relačního modelu do stavu vhodného k transformaci jsou navrženy
postupy vedoucí k částečné či plné automatizaci. Popsána je transformace používající entitně-relační model jako mezi-
stupeň, nastíněna je i transformace přímá. Podrobně je prezentován způsob sémantického obohacení.

V článku jsou dále diskutovány datové metamodely a jejich specifika pro relační i objektové paradigma, je demonstro-
váno rozšíření jazyka UML právě o elementy relačního metamodelu. UML je mj. dále rozšířeno o balíček sloužící k mode-
lování funkčních závislostí potřebných k normalizaci. Popsána je forma zápisu transformačních pravidel i potřebného séman-
tického obohacení, tzn. vytváření uživatelských značek, které tvoří jeden ze vstupů do MDA transformace.

MDA; UML; OCL; transformační pravidla; zápis; entitně-relační model; sémantické obohacení

Contact Address:

Ing. Vít H o l u b , Česká zemědělská univerzita v Praze, Fakulta provozně ekonomická, katedra informačního inženýrství, Kamýcká
1076, 165 21 Praha 6-Suchdol, Česká republika, tel.: +420 224 382 039, e-mail: holub@pef.czu.cz

