
SCIENTIA AGRICULTURAE BOHEMICA, 39, 2008, Special Issue 1: 61–66 61

DEVELOPMENT OF INFORMATIONS SYSTEM USING
METHOD OF GRADUAL TRANSFORMATIONS

M. Pícka

Czech University of Life Sciences, Faculty of Economics and Management, Department of
Information Engineering, Prague, Czech Republic

The objective of this article is to show a new way of depicting of design method model. The model is gradually created by adding
new elements to the existing model. At the beginning there are only input elements in the model. A new element is created by
a transformation of existing elements in the model. Admissible transformations are defined by methodology. We are able to produce
a diagram that captures progress of the information system development. This helps us keep the model consistent, well documented
and helps us find affected elements when the model is changed. With these principles we are able to construct a model of design
method. This model is created by concepts and admissible transformations between them. These principles are applicable to every
design method. Examples are shown on BORM and UP methodology.

BORM methodology; Unified Process; model; transformation; software engineering; method’s model

INTRODUCTION

Information system (IS) development can be carried
out by a variety of methods. The methods provide different
constructs for working with real-world terms. The goal of
analysis is to record a certain part of reality and depict it
in an appropriate model as accurately as possible. This
model (or a set of models) becomes the foundation of the
IS design. In the end the design then leads to implementa-
tion. We are focused to different aspects of the future sys-
tem during individual phases of development.

The creator of an IS generally works by sequentially
adding new elements to the model. However, analytical
and design methods usually used cannot record the rela-
tionships between the elements being added and the model
created so-far. Methods usually do not explicitly contain
relationships among their terms, either.

Nowadays, information systems are usually designed
using methodologies that do not help maintain relation-
ships among the individual gradually added elements of
the model much. Big mental jumps among loosely bound
elements (documents, diagrams) are usual in methodolo-
gies – e.g. in methodologies based upon UML there exist
huge gaps between the use-case diagrams, the activity
diagrams, sequences and classes. This forces the analyst
to fill those gaps in his mind, which increases the demands
on analyst’s experience of the modelled branch on one
hand. On the other hand, those transitions are undocu-
mented, because methodologies do not provide ways how
to record them – we cannot say why and how a certain
element got into the model. That leads to a consistency
loss among those elements. Model typically contains ele-
ments that are either useless or even false. A solution may
be to construct an IS in a sequence of small steps that fol-
low each other, such that the analyst does not lose the
context.

The goal of this article is to show a new way of cor-
rectness and consistency assurance during IS design using

successive transformation of elements in the model from
entry elements, created according to the task, to elements
making the appropriate IS model. The article also shows
a model of methodology, that illustrates time dependen-
cies between elements of methodology.

DEFINITIONS OF TERMS

For better understanding of the following text, we will
define new or not usually used terms that we will use:

Concept – is an entity with which we work in the
 method (or methodology). Examples of concepts are:
class, package, use-case, function, scenario, state, activity,
etc. Concepts are contained in model’s metamodel.

Transition between the concepts – it is a possible trans-
formation of (several) concepts to new concepts, which is
allowed in the method. Those transitions define links in
the method.

Model of admissible transitions in the method (or
shortly the model of the method) – is a model depicting
all concepts of the method and mutual transitions allowed
by the method. This model is expressed by the Concept
Transition Diagram.

Element is an instance of concept – is a representation
of concrete, further indivisible parts of the IS model. Ele-
ments are stored in a repository of the model. Examples
of elements include a concrete class, a method, a function,
a scenario, etc. A new element of the model is created by
a transformation of existing elements in the model. Spe-
cific elements are so-called input elements that are intro-
duced to the model from the outside, typically as a conse-
quence of an analysis of the task and requirements.

Transformation between elements – is a process that
generates new elements. It is an instance of a concept tran-
sition. The transformation between elements is a process
in which new elements in the model are created from the
existing ones. The transformation between elements is

62 SCIENTIA AGRICULTURAE BOHEMICA, 39, 2008, Special Issue 1: 61–66

specified by its appropriate transition. All transformations
performed are logged in the repository of the model.

Element transformation log – is a layer of the model
which depicts all transformations performed in the model.
This log records the “pedigree” of all elements in the
model (i.e. relations of predecessor-successor type in the
model). It is expressed by an appropriate diagram.

SUCCESSIVE CONSTRUCTION OF INFORMATION
SYSTEM

Successive modelling of information system in small
steps (for context and relevance assurance) can be seen as
successive adding of new elements to the existing model.
For correctness assurance we propose to abide the follow-
ing rules.
• Every new element added to the model of the informa-

tion system must have sense.
• Every element, except of the entry ones, is created by

one transformation.
• A transformation transforms several (one or more) el-

ements to one or more successor elements.
• So-called entry elements exist in the model. They have

no predecessor in the model and were created directly
from the specification. It is necessary to pay big atten-
tion to their correctness, because the whole IS design
that follows depends on them (when the foundation is
weak, the whole building is such).

If those rules are followed, a new layer of model is
constructed along with the model. The layer will show
which elements originated from which elements and will
record transformations among them (the pedigree of all
elements in the model will be available). If the origins of
all elements are recorded, a powerful tool for relevance
checking is obtained.

Characteristics of the Element Transformations Log

The layer of model that logs the transformations ac-
cording to those rules has the following characteristics:
• Every new element must be created by a relevant (for

given moment and given elements) transformation
from the elements already present in the model (pred-
ecessor-successor relation).

• Transformation is allowed if all input elements exist.
• The IS model forms a directed acyclic graph where the

nodes are the elements and the edges depict the trans-
formations (after a small and distinct transforma-
tion).

• There is a partial ordering among the elements.

These characteristics imply the range of possible ap-
plication of this approach, e.g. for checking or defining all
elements, that are affected by a change of some element.
In Fig. 1 there is an example of a part of a car service IS
designed in a BORM methodology. More about the con-
struction of the element transformation log is in (P í c k a ,
2006).

Uses of the Element Transformation Log

If the model of an IS is created according to the prin-
ciples mentioned above, it will be able:
• To assure consistency of the information system being

developed.
• To better document the process of creating the IS.
• To control the created model using the rules mentioned

above.
• To localize changes – when a change occurs in an ex-

isting project, it is possible to easily identify elements
that will be affected by this change – they are those
that originated from the changed element by a trans-
formation chain.

Application for
car submission

Employees use car
for business trips

Manager confirm
empl. applications
for the use of car

Function

Function

Scenario

Employee

Participant

Manager

Participant

Fleet operations mng.

Participant

Employee

Class

Applies for car

Action

Receive
confirmation

Action

Car

Participant

Fleet operations
manager selects

a car

Scenarion
Fleet operations
assign cars to

employees

Function Wait for mngr.
decision

State

reserveCar

Method

Function and scenarios diagram
Object-Relationship diagram 2

Object-Relationship diagram 1

Class diagram

Fig. 1. An example of elements transformation log for car fleet (in BORM)

SCIENTIA AGRICULTURAE BOHEMICA, 39, 2008, Special Issue 1: 61–66 63

Construction of model element transformations with-
out additional knowledge is tough in finding the predeces-
sors of the element and it is very laborious. There is a dan-
ger that the IS creator will stop following the mentioned
rules, or they will carry them out just formally.

CONCEPT TRANSITION MODEL

During the IS design, the construction of the element
transition log helps us to just a limited extent. The above
mentioned rules just tell us that we cannot add new ele-
ments arbitrarily – every newly added element shall have
its predecessor. This forces the designer to think about the
context of every newly added element and it decreases the
probability of errors in design. However, the designer is
not advised as to by which transformation a new element
is created. So, during the design of IS it would be worth
knowing, which elements can occur in a given context. To
this end, we need to specify admissible transformations.

The creation of new elements is driven by the method
of analysis and design of the information system. The
method specifies which transformations can be in used in
a given context and which new elements can be created.
So we need to depict the terms used in the method and the
possible transitions between them. We need to create
a “data-flow” model of the method. We named this model
the Concept Transition Model.

Unfortunately, in the methods used for analysis and
design of ISs those transitions are not explicitly specified.
For their depicting we need a new apparatus. It is described
in following paragraphs.

An Example of Transition Model

For illustrative reasons we will first show an example
of model of transitions between the concepts of the model.
For simplicity, we choose the transformation between the

Chen entity-relationship diagram and the physical model
of a relational database. This transformation is well-known
and is often used. Almost every CASE tool used for rela-
tional database modelling does it automatically. Let us
remind how it is done:
1. Transform all entities to tables.
2. If a relationship between entities is binary and of 1:N

type without attributes, then transform the relationship
to a new attribute (foreign key) and add it to the at-
tributes of the table on the N-side. If the relationship
is of 1:1 type, add foreign key to one of the tables.

3. Otherwise transform the relationship to a table. Add
foreign keys pointing to the related tables to the at-
tributes.

4. Transform remaining attributes of entities and relation-
ships to attributes in the tables.

This word-description is depicted using the diagram of
concept transition in Fig. 2. It can be seen that (one) en-
tity transforms into (one) table. A relationship can trans-
form either into an attribute (foreign key) or into a table
with two or more (according to the relationship’s level)
foreign keys (attributes). Attributes of entities and rela-
tionships transform to attributes of tables.

The above described word-description is better ex-
pressed by an algorithm, but a diagram better depicts re-
lationships and possibilities in the transformation. This
transformation can be done automatically, because we
know the correct algorithm (see e.g. G o d o l l a , L i n -
d o w , 2003). However, this is not typical in methodolo-
gies of analysis and design. We typically know the rela-
tions between concepts of the methodology, but the
concrete realisations of these relations are chosen by ana-
lyst according to their experience.

DIAGRAM OF CONCEPT TRANSITION

The possible relations in the model of concept transi-
tion can be optimally shown using a metamodel. This
metamodel is in Fig. 3. The metamodel depicts the pos-
sible relations between concepts and transitions. Transi-
tions between concepts can be generally of M:N type – i.e.
one concept may originate by a transition from more con-
cepts and during one transition there can originate more
concepts at once. Both relations between a concept and
a transition have their cardinality. This is depicted by an
association class Cardinality in the metamodel.

Just the relations between elements in the model are
defined by metamodel. To be able to define the structure
of a diagram, we need a graphical representation of each
element in the diagram. In Fig. 4 there is graphical repre-
sentation of elements of diagram of concepts’ transition.
A concept is depicted by a rectangle with its name and
transition by a circle. A name of the transition can be not-
ed by it. A transition is connected with its input concepts
by links and with its output concepts by arrows from tran-
sition to concept. Cardinalities are noted by input and con-
cepts.

Entity

Relationship

Table

Attribute

1

1

1

1

1

2..*

ERAttributte 1

1

1

Fig. 2. Concept transitions diagram for ER to physical database model

64 SCIENTIA AGRICULTURAE BOHEMICA, 39, 2008, Special Issue 1: 61–66

USAGE OF THE DIAGRAM OF CONCEPT
TRANSITION

With the method of IS analysis and design recorded by
the model of concept transition it is possible:
• To manage the development process – in every mo-

ment it is possible to say, which transformations the
method allows (it is possible for instance to create
a CASE tool capable of possible transformations of-
fers). We know which and how many elements can
originate in the next step of method.

• To check, whether the IS model matches the used
method. It is possible to control, whether the element
added to the model matches the model. The Craft-
CASE modelling tool supports such control (see Craft.
CASE homepage).

• Such record helps in performing some transformations
automatically or semi-automatically. It is necessary to
add the algorithm that defines the transformation.

• To depict the process of a method – this model can be
used for defining relations in a method and this can be
used for instance for easier understanding of relations
inside the method, for method teaching, etc.

• To control and improve methods – by having all con-
cepts and transitions defined, it is possible to control,
whether transition between elements is not too rough
(e.g. it doesn’t transform directly to final classes, in the
extreme) or too fine.

BORM

BORM (Business Objects Relational Modelling) – see
M e r u n k a et al. (2003) – is an object-oriented method
of IS analysis and design. It focuses on processes running
inside the modelled system, on their revealing, analysis
and following modelling. BORM is an interactive method
and is based on spiral model of system design. One of the
main rules in BORM is depicting of its terms using se-
quential transformations.

A process model is in BORM depicted as a set of mu-
tually communicating final automata. Those automata
represent business objects. After modelling all processes
using diagrams of processes a process model is created. In
this moment, a lot of BORM-based projects end – BORM
is often used just for process analysis, e.g. for reengineer-
ing processes purpose.

1..*

0..*

Concept

Transition

1..*

0..*

TargetRoleSourceRole

Fig. 3. Metamodel of concept transitions

Function

Scenario

Participant Participant
Role

State

Transition

Action

Relationship

ISA Association

Object

Class

Set

Method

Communicati
on

Data Flow

Composition

Inherition

1..*

1..*

1..*

0..* 1..*

0..*

1

1
1

0..*

0..*

0..*

1

1

1

1

1

1

1

1

0..1

1

0..*

1..*

0..*
1

1

0..*

0..*

0..*

1

1..*

1

Fig. 4. Diagram of concept transitions of BORM methodology

SCIENTIA AGRICULTURAE BOHEMICA, 39, 2008, Special Issue 1: 61–66 65

Process Diagram in BORM – Object Relationship Diagram
(ORD)

As the next step the transformation of the process
model into conceptual model may follow. That is a virtu-
ally ideal model created with no attention to implementa-
tion environment. Its graphical language uses a simplified
UML class-diagram (see OMG, 2002).

The last step is a transformation of the conceptual
model into the implementation environment and the ensu-
ing implementation. This transformation may be consider-
ably easy – with usage of a pure object-oriented language
(e.g. Smalltalk) and with usage of object databases. It may
be not so easy with the use of relational databases, because
of the bigger semantic gap. The advantage of this approach
is that the model remains implementation-independent as
long as possible; implementation decisions are made dur-
ing the final stage.

BORM and the Concept Transformation

The basic idea of BORM methodology is based on
transitions between its concepts. So demonstrate these
principles is easy and straightforward (see Fig. 4).

THE UNIFIED PROCESS

The Unified Software Development Process (USDP)
methodology, known better under its shortened name Uni-
fied Process (UP) is one of many object-oriented method-
ologies based upon the UML language. This methodology
comes directly from the authors of UML (Booch, Jacob-
son, Rumbought – see J a c o b s o n et al., 1999) and is
(together with its derivatives – e.g. RUP, see K r u c h t e n ,
2004) the most commonly used iterative methodology.

UP and the Concepts Transition

To implement the ideas of sequential transformations
during the IS design for the UP methodology is not as easy
and straightforward as in the case of BORM. One of the
problems is that the methodology itself consists of many
alternative methods. For the use of concept transitions we
must deal with individual methods and develop the overall
way through the methodology from them. In UP it is the
smartest to construct transition diagrams in each work
procedure.

The next problem is that transitions between concepts
are not explicitly defined in the methodology. The diagram
of concept transition for the work procedure of finding
actors and use-cases is in Fig. 5.

CONCLUSIONS

The model of concept transition allows to view meth-
ods of IS analysis and design from a new perspective. It
gives an apparatus for formalizing relations between con-
cepts in the model and their successiveness. The model
helps gain a better understanding of a method. The fact
that relations inside this method are well defined improves
the method’s manageability and the possibilities to im-
prove it.

During the IS development, by using the model of con-
cept transition we get several advantages. The model can
be used for managing the development process, for control
of the method usage and for depicting the method’s pro-
cess.

Existing CASE tools support some ideas of the model
of concept transitions, e.g. CraftCASE modelling tool per-
forms checks, whether the added element conforms to the
method. To further improve the quality of analyst’s work,
it would be a great contribution to implement complex

Actor

Term
Definition

UseCase

Communica
tion

1

1

1

1

System
Boundary

1

1

1

Detailed
UseCase

Domain
Definition

Generalisation

0..*

0..*

0..*1..*

0..* 1

1 0..1

2..*

0..*

0..*

2..*

1

1

1

Include Extend Extension
Point

2 2

0..* 0..* 1 0..*

1

1

Fig. 5. Diagram of concept transitions of Use Cases

66 SCIENTIA AGRICULTURAE BOHEMICA, 39, 2008, Special Issue 1: 61–66

support for the concept transitions model. A CASE tool
could thus better lead an analyst through the process of
analysis, give him hints, check and record his steps.

REFERENCES

GODOLLA, M. – LINDOW, A.: Transforming Data Model with
UML. In: Knowledge Transformation for Semantic Web.
Amsterdam, IOS Press 2003.

JACOBSON, I. – BOOCH, G. – RUMBAUGH, J.: The Unified
Software Development Process. Addisson Wesley Profe-
sional 1999.

KRUCHTEN, P.: The Rational Unified Process: An Introduction.
3rd ed. Addison Wesley Professional 2004.

LIU, L. – ROUSSEV, R. – KNOTT, R. – MERUNKA, V. – PO-
LAK, J.: Management of the Object-Oriented Development

Process. Part 15: BORM Methodology. University of Akron.
University of Virgin Islands, 2005.

MERUNKA, V. – KNOTT, R. – POLAK, J.: The BORM Meth-
odology: a third generation fully object-oriented methodol-
ogy. In: Knowledge-Based Systems. New York, Elsevier
Science International 2003.

PÍCKA, M.: Metamodeling and Development of Information
Systems. In: Zeměd. Ekon., 50, 2004 (2).

OMG. OMG Unified Modeling Language Specification – ver-
sion 1.5. 2002.

PÍCKA, M.: Gradual modelling of information systems – Model
of Method Expressed as Transitions between Concepts. In:
Proc. 8th Int. Conf. on Enterprise Information Systems –
ICEIS 2006. INSTICC – Institute for Systems and Technolo-
gies of Information and Communication, 2006.

Craft.CASE homepage. http://www.craftcase.com.

Received for publication on January 14, 2008
Accepted for publication on March 3, 2008

PÍCKA, M. (Česká zemědělská univerzita, Fakulta provozně ekonomická, katedra informačního inženýrství, Praha,
Česká republika):
Vývoj informačního systému za pomocí metody postupných transformací.
Scientia Agric. Bohem., 39, 2008: 61–66.

Článek popisuje a demonstruje základní principy metody postupných transformací informačního systému. Princip
této metody vychází z toho, že model informačního systému vzniká přidáváním nových prvků do něj na základě již
v modelu existujících prvků pomocí transformace. Tyto principy lze shrnout do těchto bodů:
• Každý nový prvek, přidávaný do modelu informačního systému, musí mít smysl.
• Každý nový prvek v modelu, kromě vstupních, vzniká právě jednou transformací.
• Transformace transformuje několik (jeden nebo více) prvků na několik (jeden nebo více) následnických prvků.
• V modelu existují tzv. vstupní prvky, které v modelu nemají žádného předchůdce a vznikly přímo ze zadání.

Proces tvorby takto vytvářeného informačního systému jsme schopni zachytit pomocí diagramu transformací mezi
prvky. Pokud budeme takto konstruovat informační systém, potom nám to přinese tyto výhody:
• Budeme moci lépe dokumentovat průběh vytváření informačního systému.
• Pomůže nám to zprůhlednit vztahy mezi prvky vyvíjeného informačního systému.
• Budeme moci kontrolovat vytvářený model pomocí výše uvedených pravidel.
• Budeme moci lépe lokalizovat změny – pokud nastane změna v už existujícím projektu, tak lze snadno určit všech-

ny prvky, kterých se tato změna týká (jsou to všechny ty, které vznikly ze změněného prvku řetězem transformací).
Na takto vytvořený model se lze podívat z hlediska metamodelu. Tento metamodel se bude skládat z pojmů, což

jsou entity, s kterými pracujeme v rámci metody (např. třída, funkce apod.), a z transformací mezi nimi. Tyto transfor-
mace mezi pojmy jsou dané použitou metodou návrhu informačního systému. Tak dostaneme model transformací
pojmů metody. Tento model metody nám ukazuje všechny v metodě použitelné pojmy a způsoby jejich vzniku. Takto
vytvořený model metody nám umožňuje:
• Řízení vývojového procesu metodou.
• Kontrolu vytvářeného modelu vůči metodě.
• Automatické či poloautomatické provádění transformací.
• Znázornění průběhu metody.
• Kontrolu a vylepšování metod.

Tento model jsme schopni vytvořit pro jakoukoliv metodu návrhu informačního systému. Článek to demonstruje na
příkladu metody BORM a UP.

metodika BORM; Unifikovaný proces; model; transformace; softwarové inženýrství; model metody

Contact Address:

Ing. Marek P í c k a , Česká zemědělská univerzita v Praze, Fakulta provozně ekonomická, katedra informačního inženýrství,
Kamýcká 1076, 165 21 Praha 6-Suchdol, Česká republika, tel.: +420 224 383 244, e-mail: picka@pef.czu.cz

