
SCIENTIA AGRICULTURAE BOHEMICA, 39, 2008, Special Issue 1: 55–60 55

MANAGING AGRICULTURE SOFTWARE PROJECTS
IN THE NEW ECONOMY*

R. Pergl

Czech University of Life Sciences, Faculty of Economics and Management, Department of
Information Engineering, Prague, Czech Republic

This paper presents an original method for identifying needs for changing a software project structure. The method is based on the
theoretical background of systems theory and modelling and complex adaptive systems.

software engineering; agriculture information systems development; managing software projects; systems modelling; complex adap-
tive systems

INTRODUCTION

The New Economy brings high demands on technol-
ogy and communication (K e l l y , 1999). Moreover, agri-
culture information systems tend to be more and more
complex. The result is that the development of information
and knowledge systems becomes extremely demanding,
because:
• The structure of information stored in systems is com-

plex, polymorphic with many relations and excep-
tions.

• Requirements are driven by the marketplace, which
changes very rapidly.

• Requirements may not be clear in the beginning of the
project.

• The number of participants involved in system devel-
opment and utilization is increasing.

• Heavier requirements on security and reliability.
There are a lot of methodologies for managing soft-

ware projects. The problem is that it is not easy to decide
which methodology is the right one for a particular project.
And even under one methodology, there are typically
many possibilities of how to set the infrastructure and
processes. In current practice, experience, advice and in-
tuition are used. A high number of failing projects
(S t a n d i s h , 1995) shows, that this may not be always
enough.

One of the most crucial keys to success is how to get
from the requirements phase of the proposed software
project to an ideal set-up for the software project infra-
structure and processes. This transformation should have
the following attributes:
• structured, so that the transformation may be compre-

hended,
• documentable, so that conclusions can be verified and/

or used for future projects,
• traceable, so that conclusions may be audited.

This paper presents an original method based on the
systems theory and modelling. Project management ap-
proach is influenced by the complex adaptive systems.

MATERIAL AND METHODS

The method presented here is based on the analogy
between systems theory and software project manage-
ment. A formal model of a system consists generally of
inputs, outputs, inner elements and relations (S k y t t n e r ,
2001). Inputs are divided into endogenic ones, which are
inputs crucial for the system model and exogenic, which
are other inputs that must be taken into account. The anal-
ogy between the general system model and a software
engineering project is shown in the Table 1.

Inner elements may be, according to the concrete pur-
pose and goal of the model:
• objects,
• classes.

Objects are chosen in the case where it is necessary to
model the system in a detailed level of single objects:
documents, team roles, etc. In general methodological
models, classes will be usually used. Each element then
represents a whole class, not an individual object: e.g.
“programmer” represents all the programmers. We do not
care about structure and dynamics of objects inside the
class. For the purpose of this paper, we will assume that
all the inner elements are classes.

Now we can speak about software project management
from the perspective of systems modelling. Inputs and
outputs are given, so we may manage:
• inner elements,
• relations between inner elements,
• relations from inside to outside.

Managing the software project thus means managing
those elements. In reality, they may be connected into in-
divisible structures. Let’s define that a project factor is

* Supported by the Ministry of Education, Youth and Sports of the Czech Republic (Grant No. MSM 6046070904 – Information and knowledge
support of strategic control and No. 2C06004 – Information and knowledge management – IZMAN).

56 SCIENTIA AGRICULTURAE BOHEMICA, 39, 2008, Special Issue 1: 55–60

1. An inner element.
2. A relation between inner elements.
3. A relations from inside to outside.
4. Any sub graph of a graph consisting of a set of nodes

P and a set of edges RI ∪ RIO. The set of project factors
will be marked C.

If we suppose that the goal of a project is to achieve a
relation between inputs and outputs, then project manage-
ment means fine-tuning the project factors. This happens
based on the inputs and represents an adaptation of the
system according to inputs in such a way that the system
achieves its goal in an optimal way, i.e. with minimum
resources (time and finance).

An important problem is detecting the need for adapta-
tion. There are two possibilities:
1. Adaptation ex post, that is based on past. The adapta-

tion driver is discrepancy between outputs and inputs.
This type of adaptation may be used with iterative de-
velopment life-cycle.

2. Adaptation ex ante, that is considering the future. This
type of adaptation is performed based on prediction
about the needs of structure changes.
We observe that these two types of adaptations are usu-

ally mixed in the practice. For managing software projects,
the second type is very important. Adaptation based on
prediction prevents problems and mitigates risks.

The following contribution describes a method for ef-
fective ex ante adaptation management.

RESULTS

The method

For implementing a practical tool, it is necessary to
select certain relation types to achieve a compromise be-
tween model accuracy and ease of use. Because in prac-
tice, the requirements on the software product often pre-
vail above stochastic inputs, the selected relation represents
demands on the system. Formally, let us define:

Demand dem(a, s) of the input a to the project factor
s, where a ∈ I a s ∈ C. The domain range is an ordinal
scale <0, 10>. 0 means, that the input a does not require
an adaptation of the factor s. The higher the value, the
higher the adaptation that is needed.

An example may be the situation where the project
leader comes to the conclusion that because of an input
representing product portability, factors related to software
platform portability will have to be adapted.

As for the relations between the inner elements, sub-
stitutability is one of the most important. Demands for
adaptation of one factor may be mitigated by the substitu-
tion of another factor. An example may be providing train-
ing to team members instead of hiring a new needed expert
role. Substitutability is defined as:

Substitution of project factors s1 and s2 sub(s1, s2),
where s1, s2 ∈ C, is a mapping C × C onto an ordinal scale
<0, 10>. The substitution represents the possibility of sub-

Table 1. Analogy between the general system model and a software engineering project

System modelling term Software project analogy Set symbol
Endogenic inputs
(crucial inputs interesting for the modelling) explicit software product requirements IS

Exogenic inputs (other inputs) external conditions both predictable and unpredictable
(environment) IE

Inputs (union of endogenic and exogenic inputs) all external factors influencing the project I = IS ∪ IE

Outputs

• software product and its parametres

O
• technological environment for running the product

• documentation and other artefacts

• training

Inner elements

• team (project roles)

P
• subcontractors

• tools (both development and supporting)

• artefacts (code and documentation)

Inner relations (relations between inner elements)

• process

RI

• project management

• intra-team communication

• subcontractor communication

Inner to outer relations information to the customer RIO

Outer to inner relations information about the requirements changes ROI

Relations from inside to both outside and inside cooperation requests to the customer from the team RIOI

Relations from outside to both inside and outside the team responds to immediate customer requests for
cooperation ROIO

Relations (union) all relations
R = ROIO ∪ RIOI ∪ RIOI ∪

∪ ROI ∪ ROI ∪ RIO
∪ RIO ∪ RI ∪ RI

SCIENTIA AGRICULTURAE BOHEMICA, 39, 2008, Special Issue 1: 55–60 57

stituting a demand on project factor s1 by a substitute s2.
In the case where substitution is not possible, the function
has a value of 0. The higher value, the higher possibility
of substitution. The value 10 means perfect substitution.

Individual demands on factor adaptation are added and
we get the total demand. This total demand will be called
the difference:

Difference of the factor sj, where j = 1, ... , n is the
value of the function dif(sj), that assigns a non-negative
whole number of every project factor sj ∈ C:

1

dif() dem(,)
m

j i j
i

s a s
=

= ∑
where ai is input, n is the number of project factors and m
is the number of inputs.

One factor may be substituted by multiple substitutes,
as covered by the following definition:

Total substitution of the project factor sj, where
j = 1, ... , m is the value of the function csub(sj), that as-
signs a non-negative whole number to every project factor
sj ∈ C:

1,

csub() sub(,)
n

j j k
k k j

s s s
= ≠

= ∑
where n is the number of project factors.

The resulting demands on factor adaptation may be
thus mitigated by inner substitution relations. We get the
resulting difference of the factor:

Resulting difference of the project factor sj is the
function

vdif(bj) = max(0, dif(bj) – csub(bj))

The resulting difference represents overall netto de-
mands on factor adaption. The factors with highest values
are the most crucial topics for project management.

Inputs and factors selection

The next step is to select appropriate inputs and project
factors. The sets I and C are in reality very large. For prac-
tical applications it is necessary to specify a subset of the
inputs I 2 ⊂ I and a subset of the project factors C2 ⊂ C.
Ideal attributes of those sets should be:
• completeness,
• independence,
• minimalism.

In practice, it is very hard to achieve perfection in all
those parameters and we make a compromise between
completeness and model comprehensibility and manage-
ability, because the time complexity of processing all de-
mands according to the definition is Θ(|I 2 | × |C2|).

Using the method

The process of evaluating the resulting differences is
as follows:

1. Requirements gathering. Requirements gathering by
classical methods (interviews, questionairres, etc.).

2. Structuring requirements. Informal requirements are
transformed to method’s system inputs.

3. Requirements analysis. This step means identification
and quantification of demand functions. For all pairs
of inputs and factors, we analyse whether the input
demands some sort of adaptation. For factors not
present, the adaptation means the adoption of this fac-
tor. The demand then represents the complexity of the
factor implementation.

4. Difference function evaluation according to the for-
mula above.

5. Substitution functions and total substitutions evalua-
tion. For factors with high differences, the high adap-
tion demand may be mitigated by identifying some
substitution relations. Substitutions for each factor are
then summed according to the formula above.

6. Resulting differences evaluation according to the for-
mula above.

7. Results interpretation. Non-zero resulting differences
show the needs of factor adaptation. The higher the
value, the higher the needs of overall adaptation. It is
necessary to note that the resulting difference has an
absolute quantitative character while the demands may
have various qualitative characters as well. Those
qualitative characters cannot be easily expressed in the
method. Thus situations may occur when two demands
on an adaptation may go even against each other. The
resulting difference represents just a sum of all the de-
mands and its high value must be interpreted correctly
according to the reality of the situation. Appropriate
management actions must be undertaken then. Some-
times, no action may be the best action.
The described steps are performed in the preparation

phase but may be put more precisely later. The first pre-
liminary evaluation of adaptation needs is performed after
the first round of high-level requirements.

A practical example

Let us show one small practical example demonstrat-
ing the use of the method. Let us imagine that we need to
develop an information system for the cattle farm. The
system should hold the evidence of the cattle, the evidence
of the veterinary inspections and lactation evidence.

The first task is to select appropriate inputs and project
factors. As inputs I2 we may choose quality characteristics
according to ISO/IEC 9126-1. The norm defines six char-
acteristics:
• functionality,
• reliability,
• usability,
• efficiency,
• maintainability,
• portability.

58 SCIENTIA AGRICULTURAE BOHEMICA, 39, 2008, Special Issue 1: 55–60

As for the project factors C2, let us focus on the catego-
ries: team characteristics, roles and process and let us
specify the following factors:
• team characteristics

• qualification,
• personal stability,
• personal commitment,

• roles:
• team leader,
• analyst,
• developer,
• tester,
• technical writer,
• subject matter expert.

• process:
• development process flexibility,
• risk management,
• quality assurance.

The next step is valuing the demand functions. The
valuation is based on interviews and information gathering
about the needs of the future system. We may, for example,
learn that the system must be very reliable and this makes
demands on our team qualification, on the tester role and
also makes the quality assurance process a crucial one.
There are a few functions that will need some more qual-
ification, but the worst issue is that the project is large and
complex and there is not much time. It makes demands on
the team commitment. Unfortunately, it looks like the team
commitment is not high and should be increased, and for-
tunately, the team is at least stable and the personality of
the team leader is a great example for the team members.
Users demand the possibility of remote lactation data gath-
ering. This will be solved by porting the solution to mobile
devices. This portability will require more team qualifica-
tion and will enhance demands on the tester role and over-
all quality assurance.

First, we fill in the demands table (Table 2). Only rows
and columns with at least one non-zero demand are
shown.

Next, we quantify the substitution functions like:
sub(commitment, personal stability) = 2
sub(commitment, team leader role) = 3

By incorporating these substitutions we obtain a table
with resulting differences (Table 3).

Now we can interpret the result. The analysis shows
us, that the most crucial areas that will require adaptation
are team qualification and quality assurance. The tester
role will have more demands which can be fulfilled either
by hiring another tester or increasing the tester’s load. In-
creased personal commitment will be required, but it will
be mostly mitigated by substitutes, so there is no big need
for adaptations.

DISCUSSION

Large agriculture software projects tend to be very
complex and demanding. Project management is a sort of
balance between control with rigour and coaching with
creativity. Demands on accurate cost and time estimations
force detailed planning and adherence to the plan. On the
other hand, it limits the flexibility, which is crucial in to-
day’s turbulent environment of changing laws, regulations,
globalization and other aspects. Nevertheless, more flex-
ibility, creativity and less control requires high level of
experience and expertise and leads to risks that the project
will run out of control and will not fulfil its purpose.

Various methodologies address various risks of project
failure. The so-called “rigorous methodologies” focus on
processes and planning. An example of rigorous method-
ology is Rational Unified Process (RUP) that is widely
used. On the other hand we have the family of “agile
 methodologies” that rely more on people and commit-
ment. We can name Extreme Programming, Scrum, Adap-
tive Software Development, Dynamic Software Develop-
ment Method and others.

All agile methodologies honour the following princi-
ples and practices:

Table 2. Demands analysis

Dem(a, s)
Inputs a

dif(s)
reliability functionality portability

Factors s

team qualification 6 2 5 13

commitment 0 8 0 8

tester role 3 0 8 11

quality assurance 8 0 5 13

Table 3. Resulting differences

Total difference dif(s) Total substitution csub(s) Resulting difference vdif(s)

Factors s

team qualification 13 0 13

commitment 8 5 3

tester role 11 0 11

quality assurance 13 0 13

SCIENTIA AGRICULTURAE BOHEMICA, 39, 2008, Special Issue 1: 55–60 59

• Customer orientation. The main effort is given to
deliver a quality product that brings value to the cus-
tomer, and to avoid contention with customer.

• Communication emphasis. The emphasis is given to
an informal, open communication of all participants in
the project (the team and the customer).

• Simplicity, informality. An effort to simplify the
process, make it efficient and get rid of all superfluous
costs and activities is apparent in all the methodolo-
gies.

• Incremental development with short iterations. De-
velopment is always performed in small functional
parts and the completed system (or its prototype) is
delivered to the customer as soon as possible.

• Modern technologies utilization. Although not being
a crucial constraint, AM utilize modern object-orient-
ed programming languages and modern development
environment possibilities.

Every single methodology of both groups brings useful
practices that can be successfully utilized under specific
circumstances. However, two negative situations may oc-
cur, when sticking to one methodology:
1. not utilizing useful practices of other methodologies,
2. using prescribed practices that do not bring advantage

to the project (P o p p e n d i e c k , P o p p e n d i e c k ,
2003).

Combining methodologies is a good solution, but it
must be always done based on real needs. The presented
method introduces a way how to evaluate the need of ad-
aptation in various parts of a project. This adaptation can
be most easily performed by adopting the practices of the
particular methodologies that address the related subject.

CONCLUSION

In this paper, we addressed the issue that the New
Economy and other aspects of today’s dynamic world
bring high demands on information systems in agriculture.
There are many methodologies that differ in various as-
pects, mostly in the ratio of rigour and control to flexibil-

ity. Every project in a certain environment has a unique
ideal set-up. Approximation to this set-up is a vital factor
in a project’s success. It means there must be some sort of
software project structure adaptation. The first step is
qualification and quantification of those adaptation
needs.

The presented method brings one possible approach to
this issue. It is based on the analogy between the system
modelling and a software project and sees the software
project as a system with inputs, outputs and inner struc-
ture, which is represented by project factors crucial in the
project management.

The presented example shows how the method may be
used for adaptation needs evaluations. In this simple ex-
ample, the conclusions may be of course made just with
common sense, but in real situations, typically tens of in-
puts and factors will be involved and the conclusions will
not be that apparent.

The most important step is the selection of appropriate
inputs and project factors sets. There should be the largest
manageable number of independent elements in each set.

Using the method does not solve the software engin-
eering issues, but it does help to work with them in a for-
mal, structured, manageable way that simplifies discus-
sion and reasoning and makes decision making process
a documentable, traceable action. This brings an opportu-
nity of costs reduction, because incorrect management
decisions are the most expensive ones.

REFERENCES

KELLY, K.: New Rules for the New Economy. Penguin (Non-
Classics) 1999.

POPPENDIECK, M. – POPPENDIECK, T.: Lean Software De-
velopment: An Agile Toolkit for Software Development
Managers. Addison-Wesley 2003.

SKYTTNER, L.: General Systems Theory. World Scientific Pub-
lishing Company, 2001.

STANDISH Group International: Statistics about software
projects failure rate. Available at: http://www.standishgroup.
.com/sample_research/PDFpages/chaos1994.pdf.

Received for publication on January 14, 2008
Accepted for publication on March 3, 2008

PERGL, R. (Česká zemědělská univerzita, Fakulta provozně ekonomická, katedra informačního inženýrství, Praha,
Česká republika):
Řízení softwarových projektů v prostředí Nové ekonomiky.
Scientia Agric. Bohem., 39, 2008: 55–60.

Zemědělská výroba v prostředí Nové ekonomiky vyžaduje kvalitní technologickou a informační podporu. Spolu
s tímto rostou nároky na bezpečnost, dostupnost, ovladatelnost a funkčnost informačních systémů, což klade zvýšené
nároky na řízení softwarových projektů. Vysoká míra neúspěšnosti ukazuje, že situace není zcela ideální.

Problémem není nedostatek metodologie, právě naopak, metodik pro řízení softwarových projektů existuje celá
řada, a to jak tradičních, tak nových. Metodiky dělíme obecně na tzv. rigorózní, jež kladou důraz na procesy a řízení,
a tzv. agilní, jež se snaží dosáhnout flexibility. Ideální struktura projektu a jeho řízení by měla být taková, aby výstupem
projektu byl softwarový produkt v požadované jakosti při nepřekročení plánovaných zdrojů.

60 SCIENTIA AGRICULTURAE BOHEMICA, 39, 2008, Special Issue 1: 55–60

Příspěvek představuje jednu z možných cest, jak určit, které oblasti projektového řízení je třeba upravit. Je zde
představen teoretický aparát, jež je založen na analogii systémového modelování a softwarového projektu. Na softwa-
rový projekt nahlíží jako na systém, jež má vstupy, výstupy a vnitřní strukturu. Cílem je v souladu s teorií o komplex-
ních adaptivních systémech provést adaptaci vnitřní struktury tak, aby výstupy (tj. produkt) odpovídaly vstupům (tj.
zadání). V příspěvku je popsán aparát a je demonstrován na jednoduchém praktickém příkladu. Vstupem aparátu jsou
vstupní požadavky na informační systém, jež kladou určité nároky na části projektu. Tyto nároky se sčítají, mohou však
být zmírněny substitučními vazbami uvnitř projektu. Výstupem je kvantifikace částí projektu, jež na základě vstupů
budou vyžadovat adaptaci.

Použití aparátu neřeší problémy řízení softwarového projektu, ale umožňuje s nimi formálním, strukturovaným
a řízeným způsobem pracovat. Zjednodušuje diskusi a odvozování závěrů a přispívá k vytváření kvalifikovaných roz-
hodnutí založených na kvantifikovaných veličinách. Takto přispívá k eliminaci nesprávných rozhodnutí, a tím i k úspo-
ře nákladů.

softwarové inženýrství; vývoj zemědělských informačních systémů; řízení softwarových projektů; systémové modelo-
vání; komplexní adaptivní systémy

Contact Address:

Ing. Robert P e r g l , Česká zemědělská univerzita v Praze, Fakulta provozně ekonomická, katedra informačního inženýrství,
Kamýcká 1076, 165 21 Praha 6-Suchdol, Česká republika, tel.: +420 224 383 244, e-mail: pergl@pef.czu.cz

