SURVEY ABOUT THE WEED OCCURRENCE ON ARABLE LAND IN THE CZECH REPUBLIC*

M. Kolářová, L. Tyšer, J. Soukup

Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Prague, Czech Republic

Current weed spectrum on arable land in the Czech Republic was analyzed and constancy for the individual species determined. Phytocoenological survey was conducted within 2006–2008 on 62 farms. The choice of field selection for sampling was winter cereals, spring cereals, and wide-row spring crops. In the central part of each field phytocoenological relevés sizing 100 m² were monitored. In total, 172 weed species (58 apophytes, 97 archaeophytes, and 17 neophytes) belonging to 32 families coming from 290 relevés were recorded. *Chenopodium album, Fallopia convolvulus*, and *Viola arvensis* were among the species with the highest constancy. Altogether 28 volunteer crops belonging to 8 families were determined (18 dicotyledonous and 10 monocotyledonous). *Trifolium repens* and *Brassica napus* subsp. *napus* were the most frequent volunteers.

weed spectrum; volunteers; constancy; phytocoenological relevé; Chenopodium album; Trifolium repens

INTRODUCTION

Weed flora is the natural part of plant communities on arable land. From the ecological point of view, weed vegetation on arable land stays still at the initial stage of succession and does not reach the later succession stages because of repeated cropping (L o s o s o v á et al., 2009). However, depending on frequency and timing of soil cultivation, different life-form types of weeds dominate in weed community (H o l z n e r, 1982).

In Central Europe, about 300 species can be designated as arable weeds (Holzner, Immonen, 1982; Börner, 1995). Investigating Czech Republic's weeds, Kropáč (1986) detected about 260 species of higher plants (excluding bryophytes) and 12 volunteers. Besides the influence of ecological site conditions (e.g. soil, climate), human activities continually influence the weed species occurrence in agrophytocoenoses. Intensive farming is nowadays characterized by narrow crop rotations, intensive soil tillage, effective seed cleaning technology, usage of highly efficient herbicides, application of high fertilizer and lime rates, new harvesting technologies, etc. (Hilbig, Bachthaler, 1992). Significant changes in weed communities have been repeatedly confirmed and analyzed (e.g. Kropáč, 1988; Andreasen et al., 1996; Kohout et al., 2003; Lososová, Simonová, 2008; Májeková et al., 2010), namely as concerns species impoverishment and occurrence of species difficult to control including new alien

plant species (J e h l í k , 1998). The objective of this study was to analyze the current weed spectrum in the Czech Republic and to determine the constancy for the individual species.

MATERIAL AND METHODS

A phytocoenological survey on the area of the Czech Republic lasted from 2006 till 2008. Totally 62 farms (both conventional and organic) were chosen for the research. The elevation range of 175-650 m a.s.l. represented all areas suitable for agricultural production in the Czech Republic. Fields with winter cereals (winter wheat, winter barley, rye, spelt, triticale), spring cereals (spring barley, oat, naked oat, spring wheat), and wide-row spring crops (sugar beet, potatoes, maize, oil pumpkin, feeding carrots, fodder beet, beet-root) were selected for the sampling. For cereals the monitoring was performed in June and July, for wide-row crops in August and September, during the period of full vegetation. At each field, one phytocoenological relevé of a standard size of 100 m² was recorded in the central part of the field. The species cover was estimated using nine-degree Braun-Blanquet cover-abundance scale (Braun-Blanquet, 1964, adaptation Barkman et al., 1964). Plant species like (a) crops plants emerging from harvest losses of forecrop or (b) plants which are commonly grown as crops but can occur also in nature (their origin in

^{*} Supported by the Ministry of Education, Youth and Sports of the Czech Republic (S grant).

Table 1. Families of species and volunteers recorded

Family	Species	number	P 1	Species number		
ramity weeds volunteers		Family	weeds	volunteers		
Asteraceae	29	2	Rosaceae	3	0	
Poaceae	16	10	Rubiaceae	3	0	
Brassicaceae	15	3	Amaranthaceae	2	0	
Caryophyllaceae	10	0	Convolvulaceae	2	0	
Scrophulariaceae	10	0	Fumariaceae	2	0	
Polygonaceae	9	0	Malvaceae	2	0	
Chenopodiaceae	8	1	Primulaceae	2	0	
Fabaceae	7	9	Urticaceae	2	0	
Lamiaceae	7	0	Violaceae	2	0	
Apiaceae	6	0	Campanulaceae	1	0	
Boraginaceae	6	0	Equisetaceae	1	0	
Ranunculaceae	5	0	Juncaceae	1	0	
Euphorbiaceae	4	0	Onagraceae	1	0	
Geraniaceae	4	0	Portulacaceae	1	0	
Solanaceae	4	1	Valerianaceae	1	0	
Papaveraceae	3	1	Hydrophyllaceae	0	1	
Plantaginaceae	3	0				

Fig. 2. Number of apophytes, archaeophytes and neophytes observed

Fig. 1. The most frequent weeds families

field was unclear) were considered as volunteers and evaluated separately. Fungi, non-vascular plants, and self-seeded seedlings of trees were not considered for evaluations. The nomenclature followed K u b \pm t et al. (2002). Status of immigration time of each species was stated according to P y \pm ek et al. (2002).

At each species, number of fields with its occurrence (a_i) and constancy (C_i) were stated (M o r a v e c , 1994):

$$C_i = \frac{a_i}{n} \cdot 100$$

where:

 C_i = constancy of the *i* species (%) a_i = number of fields with occurrence of the *i* species n = total number of relevés

Fig. 3. Percentage of apophytes, archaeophytes and neophytes observed

RESULTS

In sum, 172 weed species (Table 2) referring to 32 families (Table 1) were recorded. More than 50% of the species referred to 6 families (*Asteraceae, Poaceae, Brassicaceae, Caryophyllaceae, Scrophulariaceae,* and *Polygonaceae*) (Fig. 1). *Chenopodium album* was the species with the highest constancy, followed by *Fallopia convolvulus, Viola arvensis, Cirsium arvense, Polygonum aviculare,* and other species (Table 2).

In total, 28 volunteers (18 dicotyledonous, 10 monocotyledonous) belonging to 8 families were encountered (Table 3). *Trifolium repens* and *Brassica napus* subsp. *napus* were the most common volunteers.

Altogether 58 apophytes, 97 archaeophytes, and 17 neophytes (excluding volunteers) (Fig. 2) with variable percentage (Fig. 3) were detected.

DISCUSSION

The estimated number of total weed species on the European continent considerably varies. Klika (1955) estimated the total number of weeds in Central Europe at 350 to 400 species, with 50 of them being the most commonly encountered. Estimations of H a n f (1979) for Europe were even 650 species. In his vocabulary of weeds, Williams (1982) comprised a total of 1043 plant species occurring in Western Europe. According to Williams, Hunyadi (1987), in Eastern Europe the number of the listed weed species was even greater (1780). On the other hand, in their European survey Weber, Gut (2005) mentioned just 281 weed species (176 genera and 48 families). The reason of such a vast disparity of data stated by some authors is undoubtedly based on various definitions of the weedy species, which were thus attributed different levels of significance.

Similarly, the estimates given by the individual authors for the Czech Republic differ. K r o p á č (1986) identified about 260 weed species among higher plants. Lososová, Simonová (2008) reported a total of 303 weed species in Moravia in 2005. It is possible that the relatively low number of weed species recorded in the present research is due to the chosen methodology - the monitoring was performed only in the central parts of the fields with lower weed occurrence. Field margin vegetation is often more diverse affected by the adjacent neighbouring phytocoenosis (Marshall, Arnold, 1995). Nowadays, weed species with broad ecological amplitude and weeds naturally resistant to frequently used herbicides belong to those with the highest constancy. Lososová et al. (2009) identified Chenopodium album agg., Cirsium arvense, Elytrigia repens, Fallopia convolvulus, and Viola arvensis as the currently most abundant weeds.

The largest percentage of weed species (281 in total) found by Weber, Gut (2005) belonged to

the Asteraceae (61), Poaceae (55), Brassicaceae (15), Polygonaceae (14), and Apiaceae (11) families. Amaranthus sp., Bromus sp., and Rumex sp. were identified as the most significant genera represented by 7 species each. G l e m n it z et al. (2004) considered Asteraceae, Poaceae, Polygonaceae, Caryophyllaceae, Brassicaceae, Papaveraceae, and Fabaceae the largest families of weeds in Europe occurring along the observed transect (South–North of Europe). None of the above cited authors ranged the Scrophulariaceae among the most widespread families. Contrarily, we have recorded 10 species of this family, six of which belonging to the genus Veronica.

Out of the total number of found weeds (excluding volunteers), 33.72% were considered apophytes, 56.40% archaeophytes, and 9.88% neophytes. This finding correlates well with the data reported by H o l e c et al. (2008), who mentioned approximately 30% of apophytes, 60% of archaeophytes, and only 10% of neophytes among arable weeds occurring in the Czech Republic.

More than twice higher number of volunteers (28) was registered on the territory of the Czech Republic compared to the 12 findings of Kropáč (1986). This significant difference is likely due to different criteria by which a given plant species was considered as volunteer. Another reason may be that the relevés were logged in organic fields, which are generally characterized by more diverse crop rotations with a wider variety of crops (Šarapatka, Urban, 2006); in the present study, only 12 volunteers were found in conventional farming and 26 in organic farming. Weed beet (Beta vulgaris) was also assigned to this group despite it is a hybrid between cultural beet (Beta vulgaris subsp. vulgaris) and landraces (sea beet, Beta vulgaris subsp. maritima) (Holec et al., 2007). To the Czech territory it was introduced along with the import of sugar beet seeds from the Mediterranean (Soukup et al., 2002). Trifolium repens was found to be the most common volunteer registered in 44 fields. Its frequency may be associated with its perenniality and growing of clover as a forage crop especially in organic farming. Herein it was assigned to volunteers despite it is not much grown nowadays and might be also introduced from the surroundings because T. repens is our second most significant clover in nature and permanent grasslands (Regal, Krajčovič, 1963). Its seeds can perceive for a long time in the soil-seed bank; they pass through digestive tract of animals without any damage and can be dispersed through the manure. The second most common (41 fields) volunteer was oilseed rape (Brassica napus subsp. *napus*). This is particularly due to its extensive growing in the Czech Republic, frequent high harvest losses (often much higher than normal seed rate), and long seeds persistence in the soil seed bank with the possibility of the many years' gradual emergence in succeeding crops (Kohout, Soukup, 1996).

Table 2. Weed species recorded (sorted by constancy)

Species	Family	a _i	C _i		Species	Family	a _i	C _i
Chenopodium album agg.*	Chenopodiaceae	211	72.76		Vicia tetrasperma	Fabaceae	28	9.66
Fallopia convolvulus	Polygonaceae	189	65.17		Atriplex patula	Chenopodiaceae	27	9.31
Viola arvensis	Violaceae	171	58.97		Descurainia sophia	Brassicaceae	27	9.31
Cirsium arvense	Asteraceae	157	54.14		Lapsana communis	Asteraceae	27	9.31
Polygonum aviculare agg.	Polygonaceae	157	54.14		Setaria pumila	Poaceae	27	9.31
Tripleurospermum inodorum	Asteraceae	139	47.93		Consolida regalis	Ranunculaceae	25	8.62
Elytrigia repens	Poaceae	121	41.72		Chenopodium polyspermum	Chenopodiaceae	25	8.62
Galium aparine	Rubiaceae	117	40.34		Centaurea cyanus	Asteraceae	24	8.28
Capsella bursa-pastoris	Brassicaceae	116	40.00		Lycopsis arvensis	Boraginaceae	24	8.28
Taraxacum sect. Ruderalia	Asteraceae	115	39.66		Solanum nigrum	Solanaceae	24	8.28
Stellaria media	Caryophyllaceae	113	38.97		Galium spurium	Rubiaceae	23	7.93
Thlaspi arvense	Brassicaceae	101	34.83		Gnaphalium uliginosum	Asteraceae	21	7.24
Veronica persica	Scrophulariaceae	91	31.38		Matricaria discoidea	Asteraceae	21	7.24
Convolvulus arvensis	Convolvulaceae	90	31.03		Rumex crispus	Polygonaceae	21	7.24
Anagallis arvensis	Primulaceae	74	25.52		Sinapis arvensis	Brassicaceae	20	6.90
Echinochloa crus-galli	Poaceae	72	24.83		Arabidopsis thaliana	Brassicaceae	19	6.55
Apera spica-venti	Poaceae	71	24.48		Equisetum arvense	Equisetaceae	18	6.21
Myosotis arvensis	Boraginaceae	69	23.79		Mentha arvensis	Lamiaceae	17	5.86
Euphorbia helioscopia	Euphorbiaceae	67	23.10		Mercurialis annua	Euphorbiaceae	16	5.52
Lamium purpureum	Lamiaceae	67	23.10		Stachys palustris	Lamiaceae	16	5.52
Plantago major	Plantaginaceae	65	22.41		Geranium dissectum	Geraniaceae	15	5.17
Amaranthus retroflexus	Amaranthaceae	61	21.03		Vicia angustifolia	Fabaceae	15	5.17
Geranium pussilum	Geraniaceae	61	21.03		Arctium tomentosum	Asteraceae	14	4.83
Persicaria lapathifolia	Polygonaceae	54	18.62		Euphorbia exigua	Euphorbiaceae	14	4.83
Avena fatua	Poaceae	53	18.28		Galinsoga parviflora	Asteraceae	14	4.83
Veronica arvensis	Scrophulariaceae	53	18.28		Spergula arvensis	Caryophyllaceae	14	4.83
Silene noctiflora	Caryophyllaceae	51	17.59		Conyza canadensis	Asteraceae	13	4.48
Amaranthus powellii	Amaranthaceae	49	16.90		Matricaria recutita	Asteraceae	13	4.48
Chenopodium hybridum	Chenopodiaceae	43	14.83		Raphanus raphanistrum	Brassicaceae	13	4.48
Aethusa cynapium	Apiaceae	41	14.14		Datura stramonium	Solanaceae	12	4.14
Galeopsis tetrahit	Lamiaceae	40	13.79		Galinsoga quadriradiata	Asteraceae	11	3.79
Papaver rhoeas	Papaveraceae	40	13.79		Setaria viridis subsp. viridis	Poaceae	11	3.79
Sonchus arvensis	Asteraceae	40	13.79		Arenaria serpyllifolia agg.	Caryophyllaceae	10	3.45
Vicia hirsuta	Fabaceae	39	13.45		Lathyrus tuberosus	Fabaceae	10	3.45
Persicaria maculosa	Polygonaceae	36	12.41		Persicaria hydropiper	Polygonaceae	10	3.45
Fumaria officinalis	Fumariaceae	35	12.07		Aphanes arvensis	Rosaceae	9	3.10
Lamium amplexicaule	Lamiaceae	34	11.72		Conium maculatum	Apiaceae	9	3.10
Rumex obtusifolius	Polygonaceae	33	11.38		Malva neglecta	Malvaceae	9	3.10
Lactuca serriola	Asteraceae	32	11.03		Papaver dubium agg.	Papaveraceae	9	3.10
Veronica polita	Scrophulariaceae	32	11.03		Sonchus oleraceus	Asteraceae	9	3.10
Artemisia vulgaris	Asteraceae	31	10.69		Tussilago farfara	Asteraceae	9	3.10
Sonchus asper	Asteraceae	30	10.34		Urtica dioica	Urticaceae	9	3.10
Erodium cicutarium	Geraniaceae	29	10.00		Achillea millefolium	Asteraceae	8	2.76
Poa annua	Poaceae	28	9.66		Atriplex sagittata	Chenopodiaceae	8	2.76

Species	Family	a _i	C _i		Species	Family	a _i	C _i
<i>Epilobium</i> spp.	Onagraceae	8	2.76]	Anagallis foemina	Primulaceae	2	0.69
Scleranthus annuus	Caryophyllaceae	8	2.76		Anthemis austriaca	Asteraceae	2	0.69
Plantago uliginosa	Plantaginaceae	7	2.41		Anthriscus sylvestris	Apiaceae	2	0.69
Veronica agrestis	Scrophulariaceae	7	2.41		Carduus crispus	Asteraceae	2	0.69
Anthemis arvensis	Asteraceae	6	2.07		Cirsium vulgare	Asteraceae	2	0.69
Cerastium spp.	Caryophyllaceae	6	2.07		Echium vulgare	Boraginaceae	2	0.69
Hyoscyamus niger	Solanaceae	6	2.07		Chenopodium pedunculare	Chenopodiaceae	2	0.69
Microrrhinum minus	Scrophulariaceae	6	2.07		Juncus bufonius s. str.	Juncaceae	2	0.69
Odontites vernus	Scrophulariaceae	6	2.07		Papaver argemone	Papaveraceae	2	0.69
Persicaria amphibia	Polygonaceae	6	2.07		Ranunculus arvensis	Ranunculaceae	2	0.69
Silene latifolia subsp. alba	Caryophyllaceae	6	2.07		Rubus spp.	Rosaceae	2	0.69
Stachys annua	Lamiaceae	6	2.07		Rumex acetosella	Polygonaceae	2	0.69
Symphytum officinale	Boraginaceae	6	2.07		Setaria verticillata	Poaceae	2	0.69
Veronica hederifolia agg.	Scrophulariaceae	6	2.07		Sherardia arvensis	Rubiaceae	2	0.69
Carduus acanthoides	Asteraceae	5	1.72		Solanum physalifolium	Solanaceae	2	0.69
Digitaria sanguinalis	Poaceae	5	1.72		Spergularia rubra	Caryophyllaceae	2	0.69
Erysimum cheiranthoides	Brassicaceae	5	1.72		Valerianella dentata	W.I	2	0.00
Fumaria vaillantii	Fumariaceae	5	1.72		subsp. dentata	valerianaceae	2	0.69
Chenopodium ficifolium	Chenopodiaceae	5	1.72		Abutilon theophrasti	Malvaceae	1	0.34
Linaria vulgaris	Scrophulariaceae	5	1.72		Armoracia rusticana	Brassicaceae	1	0.34
Neslia paniculata	Brassicaceae	5	1.72		Bidens tripartita	Asteraceae	1	0.34
Oxalis fontana	Geraniaceae	5	1.72		Bromus hordeaceus	Denser	1	0.24
Potentilla anserina	Rosaceae	5	1.72		subsp. hordeaceus	Poaceae		0.34
Sisymbrium officinale	Brassicaceae	5	1.72		Calamagrostis epigejos	Poaceae	1	0.34
Agrostis stolonifera	Poaceae	4	1.38		Camelina microcarpa	Duggaiogoogo	1	0.24
Bromus sterilis	Poaceae	4	1.38		subsp. sylvestris	Brassicaceae		0.34
Plantago lanceolata	Plantaginaceae	4	1.38		Campanula rapunculoides	Campanulaceae	1	0.34
Ranunculus repens	Ranunculaceae	4	1.38		Cardaria draba	Brassicaceae	1	0.34
Rorippa sylvestris	Brassicaceae	4	1.38		Cirsium palustre	Asteraceae	1	0.34
Sagina procumbens	Caryophyllaceae	4	1.38		Coronopus squamatus	Brassicaceae	1	0.34
Senecio vulgaris	Asteraceae	4	1.38		Daucus carota subsp. carota	Apiaceae	1	0.34
Trifolium arvense	Fabaceae	4	1.38		Diplotaxis muralis	Brassicaceae	1	0.34
Trifolium campestre	Fabaceae	4	1.38		Euphorbia falcata	Euphorbiaceae	1	0.34
Viola tricolor	Violaceae	4	1.38		Holcus mollis	Poaceae	1	0.34
Adonis aestivalis	Ranunculaceae	3	1.03		Kochia scoparia	Chenopodiaceae	1	0.34
Calystegia sepium	Convolvulaceae	3	1.03		Lithospermum arvense	Boraginaceae	1	0.34
Consolida orientalis	Ranunculaceae	3	1.03		Myosotis stricta	Boraginaceae	1	0.34
Glechoma hederacea	Lamiaceae	3	1.03		Onopordum acanthium	Asteraceae	1	0.34
Myosoton aquaticum	Caryophyllaceae	3	1.03		Phragmites australis	Poaceae	1	0.34
Pimpinella major	Apiaceae	3	1.03		Rhinanthus alectorolophus	Scrophulariaceae	1	0.34
Poa trivialis	Poaceae	3	1.03		Senecio jacobaea	Asteraceae	1	0.34
Portulaca oleracea	Doutulasses	2	1.02		Urtica urens	Urticaceae	1	0.34
subsp. oleracea	rortutacaceae	3	1.03		Veronica chamaedrys s. str.	Scrophulariaceae	1	0.34
Aegopodium podagraria	Apiaceae	2	0.69		Vicia cracca	Fabaceae	1	0.34

 a_i = number of fields where the species occurs, C_i = species constancy *except *Ch. ficifolium* and *Ch. pedunculare*

Table 3. Volunteers recorded

Species	Family	*Crite- rion	a _i	C _i
Trifolium repens	Fabaceae	b	44	15.17
<i>Brassica napus</i> subsp. <i>napus</i>	Brassicaceae	a	41	14.14
Trifolium pratense	Fabaceae	b	29	10.00
Beta vulgaris	Chenopodiaceae	a**	23	7.93
Medicago lupulina	Fabaceae	b	16	5.52
Solanum tuberosum	Solanaceae	a	13	4.48
Triticum aestivum	Poaceae	a	11	3.79
Vicia villosa	Fabaceae	b	9	3.10
Hordeum vulgare	Poaceae	a	8	2.76
Medicago sativa	Fabaceae	b	8	2.76
Helianthus annuus	Asteraceae	a	7	2.41
Lolium multiflorum	Poaceae	a	6	2.07
Phleum pratense	Poaceae	b	6	2.07
Vicia sativa	Fabaceae	b	6	2.07
Phacelia tanacetifolia	Hydrophyllaceae	a	4	1.38
Secale cereale	Poaceae	a	4	1.38
Panicum miliaceum	Poaceae	a	3	1.03
Pisum sativum convar. sativum	Fabaceae	a	3	1.03
Raphanus sativus	Brassicaceae	a	3	1.03
Avena sativa	Poaceae	a	2	0.69
Leucosinapis alba	Brassicaceae	а	2	0.69
Lotus corniculatus	Fabaceae	b	2	0.69
Alopecurus pratensis	Poaceae	b	1	0.34
Papaver somniferum	Papaveraceae	a	1	0.34
Pisum sativum convar. speciosum	Fabaceae	a	1	0.34
Silybum marianum	Asteraceae	a	1	0.34
Triticum spelta	Poaceae	a	1	0.34
Zea mays	Poaceae	a	1	0.34

* criterion of classification as volunteer, see Methods

** Kohout (1996)

CONCLUSION

During the research, weed spectrum typical for current farming management practices was recorded in the central parts of fields with commonly grown crops. Especially weeds with wide ecological amplitude had the highest constancy. This group of species should be taken into account when developing future weed control programs and choosing herbicides. High occurrence of volunteers was observed; especially competitively significant volunteers like oilseed rape and weed beet are economically significant and problematic.

REFERENCES

- Andreasen C, Stryhn H, Streibig JC (1996): Decline of the flora in Danish arable fields. Journal of Applied Ecology, 33, 619–626.
- Barkman JJ, Doing H, Segal S (1964): Critical comments and suggestions for the quantitative analysis of vegetation. Acta botanica Neerlandica, 13, 394–419. (in German)
- Börner H (1995): Weed control. 1st Ed. Gustav Fischer Verlag, Jena. (in German)
- Braun-Blanquet J (1964): Phytosociology. 3rd Ed. Springer Verlag, Wien, New York. (in German)
- Glemnitz M, Hoffmann J, Radics L, Czimber GY (2004): Interactions between climate and land use on the composition of weed floras along a climate gradient from south to north Europe. In: 12ème Colloque International sur la biologie des mauvaises herbes, Dijon, France, 345–354.
- Hanf M (1979): Introduction to the influence of various factors on the development and control of weeds. In: Proc. 3rd EWRS Symposium, Mainz, Germany, 5–11. (in German)
- Hilbig W, Bachthaler G (1992): Economically important changes of segetal vegetation in Germany in 1950–1990. Angewandte Botanik, 66, 192–200. (in German)
- Holec J, Soukup J, Jursík M, Nováková K (2007): Relation between plant invasions on arable land and changes in growing technologies of field crops with an example on sugar-beet.
 In: Proc. Plant Invasions in the Czech Republic: Situation, Survey and Management. Česká botanická společnost, Prague, Czech Republic, 11. (in Czech)
- Holec J, Nečasová M, Tyšer L (2008): Biodiversity of agrophytocoenosis. In: Biodiversity of weed communities, its importance and sustainable use. 1st Ed. VÚRV Praha, Prague, 10–25. (in Czech)
- Holzner W (1982): Concepts, categories and characteristics of weeds. In: Holzner W, Numata M (eds): Biology and ecology of weeds. 1st Ed. W. Junk Publishers, The Hague, 3–20.
- Holzner W, Immonen R (1982): Europe: an overview. In: Holzner W, Numata M (eds): Biology and ecology of weeds.
 1st Ed. W. Junk Publishers, The Hague, 203–226.
- Jehlík V (1998): Alien expansive weeds of the Czech Republic and the Slovak Republic. 1st Ed. Academia, Prague. (in Czech)
- Klika J (1955): Study about plant communities. 1st Ed. ČSAV, Prague. (in Czech)
- Kohout V (1996): Crop volunteers as weeds in succeeding crops. 1st Ed. ÚZPI, Prague. (in Czech)
- Kohout V, Soukup J (1996): Oil seed rape (*Brassica napus* L.) as a volunteer weed and possibilities for solving this problem.
 Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz: Sonderheft, 15, 291–293. (in German)
- Kohout V, Tyšer L, Holec J, Soukup J (2003): The influence of changes in crop sowing area on the composition of weed communities on arable land in the Czech Republic. Herbologia, 4, 13–19.

- Kropáč Z (1986): Evaluation of weed species in the Czech Socialist Republic with respect to their distribution and to the losses they cause. In: Proc. 10th Czechoslovak Plant Protection Conference, Brno, Czech Republic, 239–240. (in Czech)
- Kropáč Z (1988): Changes in weed communities in Czechoslovakia, and the consequences for agricultural practice.
 Wissenschaftliche Zeitschrift der Martin-Luther-Universität Halle-Wittenberg, 37, 100–126. (in German)
- Kubát K, Hrouda L, Chrtek Jr J, Kaplan Z, Kirschner J, Štěpánek J (2002): The key to flora of the Czech Republic. 1st Ed. Academia, Prague. (in Czech)
- Lososová Z, Simonová D (2008): Changes during the 20th century in species composition of synanthropic vegetation in Moravia (Czech Republic). Preslia, 80, 291–305.
- Lososová Z, Otýpková Z, Sádlo J, Láníková D (2009): Annual vegetation of arable land and ruderal habitats. In: Chytrý M (ed): Vegetation of the Czech Republic 2. Ruderal, weed, rock and scree vegetation. 1st Ed. Academia, Prague, 73–205. (in Czech)
- Májeková J, Zaliberová M, Šibík J, Klimová K (2010): Changes in segetal vegetation in the Borská nížina lowland (Slovakia) over 50 years. Biologia, 65, 465–478.

- Marshall EJP, Arnold GM (1995): Factors affecting field weed and field margin flora on a farm in Essex, UK. Landscape and Urban Planning, 31, 205–216.
- Moravec J (1994): Phytocoenology. 1st Ed. Academia, Prague. (in Czech)
- Pyšek P, Sádlo J, Mandák B (2002): Catalogue of alien plants of the Czech Republic. Preslia, 74, 97–186.
- Regal V, Krajčovič V (1963): Fodder growing. 1st Ed. Státní zemědělské nakladatelství, Prague. (in Czech)
- Šarapatka B, Urban J (2006): Organic farming in practice. 1st Ed. PRO-BIO, Šumperk. (in Czech)
- Weber E, Gut D (2005): A survey of weeds that are increasingly spreading in Europe. Agronomy for Sustainable Development, 25, 109–121.
- Soukup J, Holec J, Vejl P, Skupinová S, Sedlák P (2002): Diversity and distribution of weed beet in the Czech Republic. Journal of Plant Diseases and Protection, 18, 67–74.
- Williams G (1982): Elsevier's dictionary of weeds of Western Europe. 1st Ed. Elsevier Scientific Publishing Company, Amsterdam, Oxford, New York.
- Williams G, Hunyadi K (1987): Dictionary of weeds of Eastern Europe. 1st Ed. Akademiai kiadó, Budapest.

Received for publication on February 7, 2013 Accepted for publication on May 21, 2013

Corresponding Author:

Ing. Michaela K o l á ř o v á, Ph.D., Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Agroecology and Biometeorology, Kamýcká 129, 165 21 Prague 6-Suchdol, Czech Republic, phone: +420 224 382 774, e-mail: mkolarova@af.czu.cz