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INTRODUCTION

The term granular material includes a large group 
of materials of particular physical, chemical, and 
mechanical properties. Granular material can be char-
acterized as a three-phase system composed of grains 
creating a skeleton and a liquid or gases which fill 
voids. Grain size may range from several meters to 
several microns. Granular materials can be found 
across a wide range of scales: in kitchen (sugar, salt), 
geophysics (sand, gravel), as well as for example in 
astrophysics (asteroids). 

A specific behaviour of granular media which ex-
hibit some properties of gases, liquids, and solids 
is in the background of considerations that granular 
materials are the fourth state of matter (J a e g e r  et 
al., 1996). That opinion is supported by the following 
properties of the material: existence of static friction, 
inelastic collisions, and a very small energy of thermal 
motions in comparison to potential energy of gravi-
tational field. Granular materials behave like a liquid 
or like a solid dependently on parameters such as the 
density of the system, moisture, etc. As compared to 
a liquid, granular material shows three distinct differ-
ences in mechanical behaviour: existence of internal 
friction, shear strength dependent on the mean stress 
and independent on velocity of deformation, cohesion 
that allows to maintain shape enforced under load (for 
example ratholes or channels).

Storage, handling, and processing of granular ma-
terials are procedures required in numerous industries 
and are of interest to various branches of science and 
technology such as physics, chemistry, mechanics, 
agriculture, and engineering. Agriculture and food 
industry are, next to chemical, power, and pharma-
ceutical industries, the largest producers and users 
of granular materials. The equipment for storage and 
processing of granular materials should meet two 
basic conditions: predictable and safe operations and 
high quality of finished products. Due to globalization 
processes the industrial companies handling particulate 
materials have been under severe pressure to reduce 
costs while enhancing the quality of their products.

Granular materials of biological origin are distin-
guished by large deformability of particles and strong 
dependence of their mechanical properties on moisture 
content. Contrary to materials of mineral origin, mois-
ture penetrates inside grain, leading in some cases to 
qualitative changes in its physical properties. These 
specific behaviour of granular materials of biological 
origin need to be considered when adjusting material 
models, experimental techniques, and technological 
solutions. The most important is that stored grain 
is a respiring biological material subjected to mi-
crobiological activity. For high-quality preservation 
during storage, a multidisciplinary approach based 
on knowledge from several fields(biology, chemistry, 
toxicology, engineering, and mathematical model-
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ling) is necessary to study the complex interactions 
among physical, chemical, and biological variables 
in a stored-grain ecosystem (J i a n ,  J a y a s , 2012).

The main objective of the paper was to describe 
the evolution and the current state of knowledge re-
garding mechanical properties of granular materials 
with special focus on agro and food biologically based 
granular materials and their influence on loads in silos. 
The paper presents a review of experimental studies 
and numerical modelling of mechanical properties 
of granular solids. Special attention was paid to the 
effects typically found in deposits of cereal grains. 

Classification of granular materials

Due to the variety of the granular materials and 
their properties, their defining and description are 
rather difficult. The properties of granular materi-
als vary within a very broad range, depending on 
the origin of a material, the processes of production 
and processing applied, and on external factors and 
conditions. The classification of materials is based 
on different physico-chemical, mechanical, and geo-
metrical properties. The parameters which are taken 
into account for classification of granular materials 
are: size of particles, shape, density, flowability, abra-
siveness, toxicity, etc. 

Based on ISO classification (I S O  3 5 3 5 , 1977), the 
Mechanical Handling Engineers’ Association (MHEA), 
UK divided the granular material according to the di-
mension of particles (D) into ten cathegories, however 
C h a t t o p a d h y a y  et al. (1994) proposed the five 
following groups:

 
• dust      D ≤ 0.42 mm
• grain      D ≤ 3.35 mm
• lump      D ≤ 40 mm
• clump     D ≤ 200 mm
• block     D > 200 mm

The classification of granular materials according 
to bulk density (ρ) is as follows:

• light      ρ < 600 kg m–3

• medium     600 kg m–3 < ρ ≤ 1100 kg m–3

• heavy     1100 kg m–3 < ρ ≤ 2000 kg m–3

• very heavy     ρ > 2000 kg m–3

The flowability defined as a motion of particles with 
reference to neighbouring particles or along surfaces 
is the next parameter describing granular materials 
(P e l e g , 1985). It has a huge influence on processes 
occurring during storage and handling of materials in 
industry and agriculture. The conventional classifica-
tions of materials according to flowability are derived 
from the classification based on the flow function (FF) 
proposed by J e n i k e  (1961). C h a t t o p a d h y a y  et 
al. (1994) extended J e n i k e ’s (1961) classification 
adding two extreme classes:

• fluidlike flooding 
• very free flowing   FF > 10
• free flowing   10 > FF > 4
• average flowing  4 > FF > 2
• poor flowing   2 > FF
• sluggish/interlocked

In the case of agricultural and food raw materials 
and products, apart from the classifications mentioned 
above, attention should be paid also to a number of 
additional features, such as: 

• possibility of freezing,
• hygroscopicity,
• toxic properties,
• properties conducive to spontaneous combustion,
• explosive properties.

Constitutive models of granular materials

Modelling mechanical properties of granular ma-
terials starts from the Mohr-Coulomb criterion of 
plasticity assuming that shear strength τ is a linear 
function of normal stress σ

where:
φ = internal friction angle
C = cohesion

Resistance resulting from internal friction and co-
hesion is overcome by external forces in the moment 
of attaining the yield strength. The Drucker-Prager 
criterion of yielding (D r u c k e r ,  P r a g e r , 1952) 
representing surface of cone in the principal stress 
space enables researchers to avoid several problems 
occurring during the application of the Mohr-Coulomb 
plasticity criterion representing a pyramid in the prin-
cipal stress space (Fig. 1).

Further developement of mechanics of granular 
materials resulted in many constitutive models describ-
ing real properties of the granular system: nonlinearly 
elastic, viscoelastic, elasto-plastic, viscoplastic, and 
hypoplastic. Among the more advanced elasto-plastic 
models having a broader application for granular mate-
rials of plant origin, the models of Ghaboussi-Momen 
and Lade should be mentioned. They were applied 
by Z h a n g  et al. (1994) to describe the stress–strain 
relationship for wheat grain mass.

The mentioned models assume that total strain εij 
is a sum of elastic εe

ij and plastic strains εp
ij:

The model of Ghaboussi and Momen adopts the 
Drucker-Prager yield condition and describes phenom-
ena typical for isotropic and kinematic hardening. It 
describes especially well the anisotropy of material, 
the hysteresis of stress-strain cycle, and the evolution 
of hysteresis loop in the course of multiple loadings. 

C  tan  

.p
ij

e
ijij    



Scientia agriculturae bohemica, 45, 2014 (4): 203–211 205

The model of Lade presents plastic strain εp
ij as a 

sum of plastic strain related with the compaction of 
material εc

ij and the plastic strain related to dilation 
of material εd

ij:

Despite of obtaining fairly good descriptions of the 
behaviour of the material, the key parameter of the 
material – the microstructure – was not considered in 
most of the models. The micropolar model based on 
Cosserat’s theory provides an opportunity to model 
the microstructure of granular media in the frame of 
continuum mechanics models. As a consequence of 
joining two theories, the model takes into account 
both the continuum and micromechanical approach. 
The strain of material results from superposition of 
displacements and rotations of particles. As a conse-
quence the stress and the couple stress resulting from 
particles displacements and rotations are considered. 
The micropolar model treats granular body as a con-
tinuum of non-deformable grains with the parameter of 
microstructure – the characteristic length representing 
mean grain diameter. The Cosserat’s model proposed by 
M ü h l h a u s ,  Va r d o u l a k i s  (1987), which takes 
into account the constitutive elasto-plastic relationship 
of Drucker-Prager and isotropic hardening and soften-
ing, proved to be a useful tool in the investigation of 
localized deformation in granular materials like the 
shear bands formation. 

Micromechanical approach – Discrete Element Method

Contrary to the continuum mechanics, the Discrete 
Element Method (DEM) proposed by C u n d a l , 
S t r a c k  (1979) is based on elementary interactions 
between the grains. The method consists in a simpli-
fied solution of the equation of motion for each grain 
of the material. The calculation procedure is based 
on the assumption that during a very short time step 
Δt acceleration and speed are constant, and the dis-

turbance of motion of a single grain does not reach 
further than to the nearest neighbours. This is the key 
assumption of the method that permits the description 
of nonlinear interactions occurring among a large 
number of elements without excessive requirements 
concerning the calculation memory power. In this 
approach all the forces acting on a given granule are 
considered – those resulting from gravity, from interac-
tions with neighbouring granules, and those resulting 
from the boundary conditions. Then, on the basis of 
Newton’s second law of dynamics, the acceleration of 
the granule is calculated. Integration in time permits 
the determination of the new velocity and position of 
each grain of the system.

The deformation of an individual grain is considered 
to be infinitely small compared to the deformation of the 
whole medium. Therefore, it is usually assumed that the 
grains are rigid and their deformation at the contact points 
is modelled through their overlapping. The displacements 
in the normal direction, tangential direction, and those 
resulting from grain rotation are considered separately. 
Modelling of interactions between grains usually involves 
viscoelastic or elasto-plastic contact in the normal direction 
and viscoelastic-frictional contact in the tangential (shear) 
direction. A new important improvement of the method 
introduced by I w a s h i t a ,  O d a  (2000) is introducing 
rolling friction which models the interaction on contact 
surface as opposite to interactions on contact point (Fig. 
2). Accumulation of energy in the contact points of the 
granules is modelled by elastic interaction, while viscos-
ity, plasticity, and dry friction model the dissipation of 
energy. The Hertz-Mindlin contact model is commonly 
used in commercial software (e.g. EDEM, Version 
2.3, 2010) to simulate nonlinear contact interactions. 

To model elongated particles (cereal grains), the 
multisphere method making cluster of overlaping 
spheres connected by a rigid bond is very helpful. 
The next step in multisphere method was building 
clusters of particles connected by elastic bond (Bonded 
Particles Model – BPM) (Potyondy, Cundall, 2004). 
The micro-properties introduced by the BPM consist 
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Fig. 1. Plasticity criteria in principal stress space: Mohr-Coulomb, 
Drucker-Prager, and Lade-Duncan

Fig. 2. Interactions between grains on contact points (C u n d a l ,  S t r a c k , 
1979) and on contact surfaces (I w a s h i t a ,  O d a , 2000)
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of stiffness and strength parameters for the particles 
and the bonds. This model reproduces many features of 
behaviour of solids, including: elasticity, stress–strain 
response, with ultimate yield, and fracturing. These 
new macro-properties arise from a relatively simple set 
of micro-properties: damage is represented explicitly 
as broken bonds, which corresponds to macroscopic 
fractures of agglomerate under applied load.

Silo load calculations and modelling

One of the first propositions of mathematical de-
scription of the behaviour of granular material in a 
silo was published over 100 years ago by J a n s s e n 
(1895) for evaluation of loads exerted by grain on 
storage silo. The method was based on an analytical 
solution of numerical equations describing the balance 
of forces on differential slice of grains filling the silo. 
The J a n s s e n ’s (1895) approach required experimen-
tal values of four material parameters: internal friction 
angle, wall friction angle, lateral to vertical pressure 
ratio, and bulk density of the material. 

Background for the recent development in granular 
mechanics and technology was established by J e n i k e 
(1961) in his study “Gravity flow of bulk solids”. 
Although at that time it was clear that most of process-
ing industries dealt with flow of granular materials, 
J e n i k e  (1961) presented the first comprehensive 
study of the subject. A broad outline of analytical 
methods available at the end of the 20th century was 
given by D r e s c h e r  (1991).

Since that time numerous questions of granular 
mechanics have been solved based on mechanics of 
continuum and exact analytical solutions of differential 
equations relating load and deformation. Numerous 
experimental and numerical research studies have been 
conducted to determine static and dynamic pressures 
and flow regimes in silos (J e n i k e , 1961; H o l s t  et 
al., 1999; R o b e r t s ,  W e n s r i c h , 2002). 

Janssen’s approach is still treated as the standard 
reference method of calculation of the silo pressures 
and is recommended by the silo designing codes 
(E u r o c o d e  1 , 2003). This approach underestimates 
the lateral pressure exerted on the wall while the ex-
ponential shape of pressure distribution corresponds 
exactly to the experimental finding. To overcome this 
difficulty E u r o c o d e  1  (2003) recommends the use 
of overpressure factors racing-up Jannsen’s pressures 
to real experimental values. E u r o c o d e  1  (2003) 
recommends also taking care of the influence of variability 
of mechanical properties of granular solids on pressure 
distribution in silo. A very illustrative example of that 
influence is the change in the wall friction coefficient of 
cereal grains resulting from a prolonged sliding of grain 
along a silo wall during discharge. During this sliding 
contact a cutin, a wax-like substance from the grain seed 
coat, accumulates on the smooth contact surface. Cutin 
acts as a lubricant that smooths the contact surface and 

changes its frictional properties. During the first 20 
cycles of fill and discharge of the model silo made of 
galvanized steel the three-fold decrease in the wall fric-
tion coefficient was observed ( M o l e n d a  et al., 1996).

For calculations of pressures in the case of more 
complicated boundary conditions or more advanced 
constitutive models the Finite Element Method (FEM) 
must be applied. The application of the micropolar 
approach into the FEM code (T e j c h m a n ,  W u , 
1993; T e j c h m a n , 1998) allows for the description 
of effects occurring in complex systems of granular 
materials of real sizes. The model appeared to be a 
very useful tool of investigating non-uniform and 
unstable behaviour of the material, like the localized 
shear zones in the interior of the granular material 
(W ó j c i k ,  T e j c h m a n ,  2009).

DEM simulations of silo loads. DEM provides 
new possibilities of deeper insight into the micro-scale 
behaviour of bulk solids, which are not available with 
traditional or even modern approach of continuum 
mechanics where gradients of displacement and stress 
are extremely high like during flow around inserts 
(K o b y ł k a ,  M o l e n d a , 2013). The rapid develop-
ment of computer calculation techniques permitted 
the realization of computer simulations of a variety 
of processes occurring in granular materials, such as: 
dynamic effects in silos, mixing, segregation, gravi-
tational discharge from silos (Z h a n g  et al., 1993; 
M a s s o n ,  M a r t i n e z , 2000; K o u  et al., 2002; 
P a r a f i n u k  et al., 2013; K o b y ł k a ,  M o l e n d a , 
2014). 

DEM simulations generally produce a huge scatter 
of inter-particle forces which after averaging provide 
useful information. An example of the horizontal forces 
acting on a vertical wall in quasi-static assemblies 
(6000 particles in two dimensions) is presented in 
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Fig. 3. Analysis of the distribution of horizontal forces 
averaged for 10 particle–wall contacts indicated a 
moderately smooth increase in the force with increase 
in particle bedding depth (S y k u t  et al., 2008). The 
DEM values are considerably larger as compared to 
J a n s s e n ’s (1895) solution. Similarly B a l e v i č i u s 
et al. (2011) obtained good agreement of lateral pres-
sure distribution vs material depth with experimental 
data which were significantly larger than J a n s s e n ’s 
(1895) solution and E u r o c o d e  1  (2003) recommen-
dations. González-Montellano et al. (2012) obtained 
the pressure distribution of  particles similar to maize 
grains along the vertical direction of the wall reach-
ing its maximum at the silo-hopper transition using 
DEM. M a s s o n ,  M a r t i n e z  (2000) reported on 
the impact of anisotropy of contact orientations on 
the pressure distribution.

To model properly dynamics of discharge, like a 
rapid, thin ouflow of particles, the contact model for 
DEM simulations must be selected very carefully as 
cereal grains reveal different behaviour depending on 
moisture content (W i ą c e k ,  M o l e n d a , 2011). The 
mechanical properties of grains are strongly influenced 
by the moisture content. W o j t k o w s k i  et al. (2010) 
found that an elastoplastic model of T h o r n t o n , 
N i n g  (1998) was efficient for simulation of the be-
haviour of dry rapeseed while a viscoelastic model of 
K u w a b a r a ,  K o n o  (1987) gave closer estimates 
of experimental data for wet seeds. P a r a f i n i u k  et 
al. (2013) used both models to simulate discharge of 
dry and wet rapeseeds from a model silo obtaining 
good agreement with experimental results. In the 
case of cohesive grains the adhesion forces should be 
considered, like described by the JKR adhesion model 
(J o h n s o n  et al., 1971). If a material is very wet, 
formation of liquid bridges between particles must be 
considered (A n a n d  et al., 2009).

The DEM proved to be a useful tool for the in-
vestigation of phenomena that cannot be efficiently 
described using methods of continuum mechanics. It 
requires further development for better consistency 
between the simulations and experimental results. DEM 
simulations can provide good agreement with experi-
mental data if the material parameters are properly 
chosen and adequate particles interaction models are 
applied (K u w a b a r a ,  K o n o , 1987; T h o r n t o n , 
N i n g , 1998; Anand et al., 2009). Still a strong limi-
tation of the method is the number of particles which 
can be considered if simulation should be performed 
within acceptable time.

There are several silo operations related to storing 
and handling of granular solids requiring special care. 
Among them a dynamic pressure switch in the first 
moment of silo discharge, eccentric discharge, and 
impact of uncontrolled increase of moisture content 
of cereal grain require special attention. These three 
examples of peculiar behaviour are described in the 
next section of the paper.

Dynamic pressure switch. Initiation of discharge 
of granular solids from silos leads to very sudden and 
strong stress redistributions which result in silo wall 
pressure ramps. Z h a n g  et al. (1993) indicated over 
40% increase in lateral pressure with its peak within 
0.7 s of the discharge time of wheat from a smooth 
and a corrugated-walled model silo. The transition of 
pressure waves within granular medium is frequently 
reported in literature as an inherent element of dynamic 
process of discharge of bulk materials in industrial 
applications. Sudden increase in lateral pressure takes 
place at the opening of discharge gate accompanied by 
ramp down of vertical pressure. This effect, sometimes 
termed “dynamic pressure switch”, may create severe 
pulsations of pressure on silo structures. 

Propagation of a rarefaction wave was modelled 
using both FEM and DEM. W e n s r i c h  (2003) stud-
ied numerically the motion of rarefaction wave in a 
tall cylindrical silo using one-dimensional version 
of Janssen’s equation and a hypoplastic constitutive 
model of the material. As the rarefaction wave results 
in dilation of the material, the decrease in vertical 
and lateral pressure as well as reduction in density 
was obtained directly behind the wave front. The 
exponential growth of the amplitude of the rarefac-
tion wave as it travels up the material bed obtained 
from numerical simulations was found to correspond 
very well with experimental data of waves travelling 
upwards through the mass-flow silo from the transi-
tion giving rise to an increase in the amplitude of the 
dynamic wall pressures (R o b e r t s ,  W e n s r i c h , 
2002; W e n s r i c h , 2002; R o b e r t s , 2012).

Pressure waves as well as associated discontinu-
ity in velocity fields in the granular material during 
discharge create large pulsations which shake the 
silo structures (T e j c h m a n ,  G u d e h u s , 1993; 
W e n s r i c h , 2002). This discontinuous behaviour 
results in severe dynamical effects of bin structures, 
i.e. pressure pulsations (called silo music) and shocks 
(called silo quake), non-uniform distribution of pres-
sure, and dynamic overpressures. Pulsating gravity 
flow in silos arises as a result of changes in density 
during flow and by varying degrees of mobilization of 
the internal friction and flow channel boundary surface 
friction (R o b e r t s ,  W e n s r i c h , 2002; M u i t e  et 
al., 2004; W a n g  et al., 2012).

Experimental observations indicate that in the case 
of plain bin hopper rarefaction wave may take form 
of localized discontinuity in velocity fields which 
moves upward the bin (B r a n s b y ,  B l a i r - F i s h , 
1975; D r e s c h e r  et al., 1978; R o n g  et al., 1995). 
The shear bands move upward into the vertical part 
of the bin. In that case the deformation mechanism is 
the movement of rigid blocks of material that slide 
over one another along the rupture surfaces. FE cal-
culations with non-local hypoplasticity ( W ó j c i k , 
T e j c h m a n , 2009) showed that the shape of internal 
shear zones depended on the wall roughness, initial 
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solid density, and silo form. The shear zones reflected 
from smooth hopper walls while in the hopper with 
very rough walls, shear zones occurred only in the 
material core. Shear zone appeared also in the verti-
cal part of the silo in the case of a very rough wall. 
Shear localizations emerge from the self-organization 
of large numbers of particles with long-range geo-
metrical interactions and rearrangements of groups of 
particles governed by contact forces between particles 
(O r d  et al., 2007). 
Eccentric discharge. In a practice of silo operations 
sometimes it is convenient to apply an eccentric 
discharge with the silo bottom outlet located at any 
eccentricity from the centre of gravity of the silo cross-
section. Eccentric discharge has been shown to create 
strong pressure asymmetry. A lot of studies have led 
to recommendations for silo design codes (B o r c z , 
H a m d y , 1991; G u a i t a  et al., 2003; Ł a p k o , 2010) 
(Fig. 4). Such pressure asymmetry causes redistribution 
of vertical and horizontal forces in the silo and produces 
bending moments in the cylindrical silo wall cross-
sections which may lead to ovalization of the wall or 
create particularly high loads that may result in silo 
failure. If the outlet eccentricity exceeds the critical 
value of 0.25, a special procedure of calculation of silo 
pressure distribution is recommended by E u r o c o d e 
1  (2003). The highest pressure asymmetry appears for 
the discharge orifice located at half the radius of the silo 
floor. Smoother silo wall resulted in larger asymmetry 
of pressure distribution. 
Asymmetry of silo pressure can be created also by 
eccentric filling. This asymmetry may result from 
non-uniform bulk density distribution of the material 
over the cross-section of silo, non-uniform levelling 
of material, and also from anisotropy of the bedding 
of granular material produced by grains rolling along 
the surface of the cone of natural repose. The potential 
for eccentric filling to decrease load asymmetry during 

eccentric discharge was investigated by M o l e n d a  et 
al. (2002). Line A in Fig. 5 represented the resultant 
moment of force exerted by grain on the silo wall 
during discharge when filling and discharge gates were 
located on the same side of the silo. Load asymmetry 
increased momentarily after opening the discharge 
gate. Line B represented the wall moment vs time 
relationship for the test when the filling chute and the 
discharge gate were located on the opposite sides. For 
this condition, load asymmetry decreased at the onset 
of discharge (M o l e n d a  et al., 2002). Similar findings 
were obtained by K o b y ł k a ,  M o l e n d a  (2013) in 
DEM simulations of eccentric filling and discharge.
Swelling pressure. The uncontrolled increase of 
moisture content may take place in stored grain due to 
grain respiration or as a result of wetting with ambient 
air during aeration. Increased grain moisture content 
leads to an increase in volume. Walls of the silo confine 
deformation of the grain in the horizontal direction that 
may lead to an increased lateral pressure (B l i g h t , 
1986; B r i t t o n  et al., 1993). D a l e ,  R o b i n s o n 
(1954) investigated the effects of moisture content 
changes on the pressure of grain in bins. They indicated 
that when the moisture content of grain was increased by 
4% w.b.(wet  basis), the lateral wall pressure increased 
as much as six times and the vertical floor pressure 
increased four times. 
Z h a n g ,  B r i t t o n  (1995) developed a theoretical 
model to estimate the relationship between increased 
moisture content and increased lateral pressure. The 
model was based on the assumption that an increase 
in grain volume was equal to the volume of absorbed 
water. In the next step of the approximation, a decrease 
in grain elasticity due to moisture content increase was 
taken into account (H o r a b i k ,  M o l e n d a , 2000). 
When kernels swelled, the contact forces increased. At 
the same time the modulus of elasticity decreased. As a 
consequence, the pressure reached its maximum value 

Fig. 4. Pressure distribution during off-centre discharge according to 
E u r o c o d e  1  (2003)
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and then decreased. Resultant volumetric strain is a sum 
of two independent components: strain generated by 
external pressure and strain resulting from grain swelling. 
The rate of mean lateral pressure increase in the model 
silo was found to be about 125 kPa kg–1 (Fig. 6).

CONCLUSION

Granular solids constitute a very wide group of ma-
terials of specific mechanical, physical, and chemical 
properties. In that group granular materials of biological 
origin represent a very important source of products 
of agriculture and food processing industry. Precisely 
determined parameters of mechanical properties of 
granular materials and properly chosen constitutive 
models are fundamental for proper design and control 
of storage, handling, and processing of those materials. 
There have still been a lot of particular and specific 
operations not fully understood or precisely described 
yet. A few examples of such processes discussed in the 
paper indicate that further development of tools for 
modelling the mechanics of granular solids is necessary. 
One of the most promising tools is the DEM. All these 
actions are necessary to ensure that the equipment used 
for storage and processing of granular materials meets 
two basic demands: predictable and safe operations 
and high quality of processed materials.
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