RAFFINOSE-SERIES OLIGOSACCHARIDES IN SOYBEAN PRODUCTS*

R. Švejstil, Š. Musilová, V. Rada

Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Prague, Czech Republic

Soybean foods forming a substantial part of Asian diet have still more expanded into European diet. Raffinose-series oligosaccharides (RSO) are important constituents of soya beans and they can be found also in soybean products. These oligosaccharides can be considered potentially prebiotic for their capability of influencing the composition of the host’s intestinal microbiota. The aim of the present paper was to determine the oligosaccharide content in various soybean products. Enzymatic assay has been used for the determination of oligosaccharides. RSO have been found in all tested samples and their content varied from 0.66 g per 100 g in soybean beverage to 5.59 g per 100 g in first clear soybean flour. Generally, the highest content of RSO has been detected in soybean flour in the average amount of 4.83 g per 100 g. There was no statistically significant difference observed in the amount of oligosaccharides in all four types of soybean flour ($P < 0.01$). Considerably high amounts of RSO have been found in sweet soybean bars and textured soy protein. Foods as soybean flour and soybean bar ‘Sójový suk’ seem to be effective natural sources of prebiotic oligosaccharides for humans.

KEYWORDS

soya; saccharides; legumes; stachyose; intestinal microbiota

Supported by the Grant Agency of the Czech University of Life Sciences Prague (CIGA) (Project No. 20132023 and Project No. 20142013).
of raffinose and stachyose on infant bifidobacteria and clostridia in vitro and found that both oligosaccharides stimulated the growth of both bifidobacteria and clostridia, which raises the question regarding the selectivity of these oligosaccharides. Suarez et al. (1999) observed increased gas production in healthy volunteers when consuming conventional soybean flour which also supports the doubts about the selectivity taking into consideration that bifidobacteria are not gas-producing bacteria (Biasati, Mattarelli, 2012). Other study also concluded that low molecular constituents of soya bean are responsible for flatulence in men (Steiger et al., 1966). On the other hand, Bouchik et al. (2004) did not observe increased symptoms of intestinal discomfort in volunteers when consuming soybean oligosaccharides.

A prebiotic is a selectively fermented ingredient that allows specific changes, both in the composition and/or activity in the gastrointestinal microbiota that confers benefits upon host well-being and health (Robertfroid, 2007). Although some authors do not consider RSO as prebiotic (Gibson et al., 2004; Robertfroid, 2007), there are strong suggestions that they are able to promote bifidobacteria at the expense of other intestinal bacteria and thus to promote the host’s health (Saito et al., 1992; Mitsuoka, 1996).

Oligosaccharides can be removed from soya beans by various methods. Soaking is the easiest, but also most ineffective way to reduce oligosaccharides in whole grains with around 25% reduction. By the combination of soaking, dehulling, washing, and cooking, more than half of total oligosaccharides can be removed (Egounlety, Aworh, 2003). Bianchi et al. (1983) recommended cooking instead of soaking as a more useful method for reduction of RSO. Enzymatic degradation by α-galactosidase can be also used to reduce RSO from soybean products (Kotiguda et al., 2007) as well as aqueous ethyl alcohol extraction (Singh et al., 2008). Low oligosaccharide meal from genetically modified soya beans represents another way of reduction of RSO in the diet (Parsons et al., 2000).

Soya beans are primarily cultivated for edible oil and animal feeding. Considering high protein content, soya beans are potentially rich source of protein for human nutrition. There is a variety of products made from soya beans nowadays. Many soy products are traditionally used in eastern Asia as an important part of the diet (Berk, 1992), a great nutritional potential of soybeans has led to extension of soybean products to western world. A soy beverage, sometimes incorrectly called soymilk, is one of such products. It is a water extract of soya beans nutritionally comparable to bovine milk, but not of the same quality as it has a slightly different amino-acid pattern, significantly lower micronutrients content, and it lacks cholesterol and cobalamin in comparison to bovine milk. Moreover, it contains typical soybean compounds as phytic acid, saponins, phytoestrogens, and oligosaccharides (Dostalova, 2003). Textured soy protein or textured vegetable protein was analyzed within this study. It has often been used as a meat extender or a meat analogue (Berk, 1992).

The aim of the present study was to determine the amount of RSO in various kinds of soybean flour and several soybean products and to evaluate possible prebiotic effect on human intestinal microbiota.

MATERIAL AND METHODS

Soybean products selected for measurement of RSO content are shown in Table 2. The products were purchased from local Czech manufacturers.

Measurements were performed by commercial assay kit for determination of galactosyl-sucrose oligosaccharides (raffinose, stachyose, verbascose), K-RAFGL (Megazyme International Ireland Ltd., Bray, Ireland). The principle of the assay is that RSO are hydrolyzed to d-galactose and sucrose using α-galactosidase. Subsequently, sucrose is hydrolyzed to d-glucose and d-fructose using invertase. d-glucose is then determined using glucose oxidase/peroxidase reagent. The method does not distinguish between raffinose, stachyose, and verbascose, but rather, measures these as a group. Since one mole of each of the raffinose-series oligosaccharides contains one mole of d-glucose, the concentrations are presented on a molar basis. Free sucrose and d-glucose in sample extracts are determined concurrently in duplicates not containing α-galactosidase. With samples used in this assay, we considered stachyose as the main oligosaccharide contained in the samples. Therefore the amount of RSO is expressed as a stachyose equivalent. After the incubation, the colour change appears. All samples were measured spectrophotometrically with 510 nm absorbance by Infinite 200PRO microplate reader (Tecan Group Ltd., Männendorf, Switzerland).

STATISTICA (Version 12, 2013) software was used to perform one-way ANOVA analysis (Duncan test) with multiple range comparison at a confidence
RESULTS

All soybean products contained detectable amounts of RSO. The largest amount of RSO was measured in first clear soybean flour. Other types of soybean flour contained similar amounts of oligosaccharides as in first clear soybean flour. Average amount of oligosaccharides in all kinds of soybean flour was 4.83 g per 100 g. These values correlate with those recorded by Karr-Lilienthal et al. (2005) and Choct et al. (2010) indicating that concentration of stachyose in soybean flour is 2–5% of dry matter (DM) and concentration of raffinose is 0.5–2% of DM. Textured soy protein contained the highest amount of oligosaccharides among non-flour samples. Two of soybean bars contained more than 2 g of RSO and soybean bar with coconut flavour contained around 1.5 g of RSO. Almost 2 g of RSO was found in soya creamer. Soybean beverage contained the lowest amount of RSO. No statistically significant difference ($P < 0.01$) in the amount of oligosaccharides present in all kinds of soybean flour and in both sweet soybean bars was observed. All results are shown in Table 2.

DISCUSSION

Concentrations of oligosaccharides determined in the four samples of soybean flour corresponded with those given in literature (Karr-Lilienthal et al., 2005) despite quite great standard deviations in some samples, probably due to nature of the method which is adequate for tentative determination of RSO (Vinjamoori et al., 2004). On the other hand, enzymatic methods are highly specific.

There are no limits and regulations for prebiotics or oligosaccharides in food whatsoever, so it is difficult to compare our results with official data. The exception is the Commission Directive of the European Union on infant formulae and follow-on formulae that recommends maximum content of 0.8 g per 100 ml of oligosaccharides in a combination of 90% of galactooligosaccharides and 10% of long chain fructooligosaccharides (Commission Directive 2006/141/EC).

Moreover, RSO can be included either in the category of carbohydrates or fibre in the product composition data sheet. It is recommended to consume 2.5–10 g of inulin type prebiotics per day to increase population of bifidobacteria in gut (Kelly, 2009). Bouhnik et al. (2004) reported that all dosages from 2.5 to 10 g of RSO per day increased the number of bifidobacteria in human gut. Considering these data, consumption of three slices (150 g) of soya bread per day is suitable for increasing the number of gut bifidobacteria as soya bread can contain up to 40% of soybean flour with no deterioration of sensory quality (Kopačová, 2002; Řezáčová, 2010). Two pieces (100 g) of soybean bar ‘Sójový suk’ per day can also stimulate growth of bifidobacteria in human intestinal tract.

Textured soy protein also contains detectable amount of RSO and, moreover, it does not contain large amounts of monosaccharides and disaccharides unlike the sweet bars. However, it does not contain a sufficient amount of RSO per serving (up to 50 g) to stimulate the bacterial population of gut and thus cannot be considered as a potential prebiotic, the same as the soybean bars ‘Sójový řez’ and ‘Margot’ and soya creamer, because its recommended serving is only 5 g per cup of coffee. The lowest amount of

<table>
<thead>
<tr>
<th>Product</th>
<th>Manufacturer</th>
<th>mMol/100 g1</th>
<th>g/100 g1,2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soybean flour – reference sample</td>
<td></td>
<td>7.44 ± 1.80</td>
<td>4.95 ± 1.20</td>
</tr>
<tr>
<td>Organic first clear soybean flour</td>
<td>Natural Jihlava, CZ</td>
<td>6.37 ± 0.66</td>
<td>4.24 ± 0.44</td>
</tr>
<tr>
<td>First clear soybean flour</td>
<td>Paleta, Lipnice, CZ</td>
<td>8.38 ± 2.20</td>
<td>5.59 ± 1.47</td>
</tr>
<tr>
<td>All-purpose soybean flour</td>
<td>Paleta, Lipnice, CZ</td>
<td>6.80 ± 1.22</td>
<td>4.53 ± 0.82</td>
</tr>
<tr>
<td>Soybean beverage ‘Zájic’</td>
<td>Morgador, Otrokovice, CZ</td>
<td>0.99 ± 0.40</td>
<td>0.66 ± 0.27</td>
</tr>
<tr>
<td>Sweet soybean bar ‘Sójový suk’</td>
<td>Unimex, Prague, CZ</td>
<td>4.17 ± 0.80</td>
<td>2.78 ± 0.54</td>
</tr>
<tr>
<td>Sweet soybean bar ‘Sójový řez’</td>
<td>Alis, Kolin, CZ</td>
<td>3.25 ± 0.32</td>
<td>2.16 ± 0.15</td>
</tr>
<tr>
<td>Soybean bar with coconut flavor ‘Margot’</td>
<td>Nestlé, Prague, CZ</td>
<td>2.45 ± 0.50</td>
<td>1.63 ± 0.33</td>
</tr>
<tr>
<td>Textured soy protein ‘Sojové vločky’</td>
<td>Natural Food, Prague, CZ</td>
<td>5.03 ± 1.03</td>
<td>3.36 ± 0.69</td>
</tr>
<tr>
<td>Soya creamer</td>
<td>Morgador, Otrokovice, CZ</td>
<td>2.73 ± 0.49</td>
<td>1.82 ± 0.33</td>
</tr>
</tbody>
</table>

1All values are means of three measurements ± standard deviation.
2Values are calculations of stachyose equivalent.
RSO, which has been found in soybean beverage, can be attributed to deliberate action during the processing. Recommended quantity of soybean beverage per serving is 25 g of powder into 250 ml of water. This amount is not enough for influencing of gut bacteria population and thus the soybean beverage cannot be considered as prebiotic.

The issue of prebiotic effect of RSO still needs to be resolved when we take into account that there are different opinions on prebiotic effects of RSO (Suárez et al., 1999; Bouhnik et al., 2004; Gibson et al., 2004).

CONCLUSION

Raffinose-series oligosaccharides are substantial components of soybean foods which may beneficially affect the host’s health by influencing the composition of microbiota. We have determined amounts of raffinose-series oligosaccharides in 9 products used in human nutrition and it can be concluded that consumption of sweet soybean bar ‘Sójový suk’ and pastry containing sufficient amount of soybean flour can influence the host’s intestinal microbiota due to perceptible amount of RSO.

REFERENCES

Corresponding Author:
Ing. Roman Švejstil, Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Microbiology, Nutrition and Dietetics, Kamýcká 129, 165 21 Prague 6-Suchdol, Czech Republic, phone: +420 224 382 762, e-mail: svejstil@af.czu.cz