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INTRODUCTION

Drying (dehydration) is one of the oldest and most 
vital operations of crops and food preservation. During 
the drying process, a large amount of water is evapo-
rated from the material, and the moisture content will 
be in equilibrium with normal atmospheric air or to 
such a quantity that minimizes the water activity, 
fungi and microorganisms. The final moisture con-
tent varieties and depend on the material (C h e n , 
M u j u m d a r , 2014). Drying is a complex process 
with simultaneous, and often coupled and multi-phase 
transfer of heat, mass and momentum (Y i l b a s  et al., 
2003). The main goal of this process is to increase the 
shelf life of foods by reducing water activity, guar-
anteeing product stability and minimizing packaging 
requirements (M o v a g h a r n e j a d ,  N i k z a d  2007, 
F e l l o w s , 2009). 

Rice (Oryza sativa L.) is one of the most critical 
commercial cereals and food crops that is widely con-
sumed as a staple food by a large part of the world’s 
population, especially in Asia and Africa. According 
to the FAO statistics, the annual world production of 
rice was about 996 million tons in 2018, and about 90% 
of this production takes place in Asia (F A O S T AT , 
2019).

Rice is the second most important cereal after wheat 
in Iran, where it is mostly cultivated in Mazandaran 
and Guilan provinces, with about 600,000 hectares 
area under cultivation, which produces more than 
75% of the total rice crop in the country (M e h r a n 
et al., 2019).

Rice is harvested as paddy at 18-24% (w.b.) mois-
ture content depending on the rice cultivar, growth 
location, number of cutting, and harvesting methods 
(B r o o k e r  et al., 1992; N o s r a t i  et al., 2019). For 
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the safe storage and prevention of paddy spoilage due 
to high initial moisture content, it must be dried to 
the moisture content of about 12-14% on a wet basis 
(P a n  et al., 2008). Thus, drying unit operation has 
become a necessary part of paddy post-harvest in the 
rice processing factories.

According to the literature, there are over 400 types 
of dryers were reported (M u j u m d a r , 1997) and new 
drying methods have been introduced replacing tradi-
tional dryers in recent years. One of these techniques 
is infrared (IR) drying, which many researchers have 
begun using for drying agricultural products (S h a r m a 
et al., 2005; K o c a b i y i k ,  T e z e r , 2009). Research 
on this technology and other new drying procedures 
is an ongoing process (d e  O l i v e i r a  et al., 2020; 
X i  et al., 2020).

Infrared radiation (IR) is a part of the electro-
magnetic spectrum with a wavelength range of 0.75 
to 1000 μm. The IR band can be divided into three 
regions of near-IR (0.75-3 ), mid-IR (3-25 ) and far-
IR (25-1000) radiation (S a k a i ,  H a n z a w a , 1994). 
The wavelengths between 2.5 to 200 μm are usu-
ally used for drying purposes (P a n ,  A t u n g u l u , 
2010). During the IR drying, the water in the product 
is evaporated by absorbing infrared radiation from 
the heating elements without heating the surround-
ing air (M o h s e n i n , 1984; J o n e s , 1992). This 
drying technology has several advantages, such as 
simplicity of the equipment, uniform heating, high-
quality dried materials, reduced drying time, no pol-
lution and significant energy saving (T o ğ r u l , 2006; 
M o t e v a l i  et al., 2011). According to the literature, 
paddy can be dried by different dryers such as fluid-
ized- bed (S a r k e r  et al., 2015; C h o k p h o e m p h u n , 
C h o k p h o e m p h u n , 2018), microwave (Jafari et 
al., 2018), and IR (N o s r a t i  et al., 2019). As reported 
by Z a r e  et al. (2015), the IR drying method is an 
appropriate method for heat-sensitive agricultural ma-
terials like paddy. The IR technology can be assisted 
with hot air dryers. A combined IR-hot air drying 
system has advantages such as higher quality of dried 
material and shorter drying time compared to IR or 
hot air, separately. In addition, energy consumption is 
dramatically reduced, and heat and mass can transfer 
more efficiently (Ł e c h t a ń s k a  et al., 2015). 

Several studies have been carried out on IR drying 
of agricultural crops such as vegetables (H e b b a r  et 
al., 2004), onions (P r a v e e n  K u m a r  et al., 2005), 
kiwifruits (A i d a n i  et al., 2017; S a d e g h i  et al., 
2019), banana slices (N i m m o l  et al., 2007), green 
pea (B a r z e g a r  et al., 2015), spearmint (N o z a d  et 
al., 2016), and rough rice (Z a r e  et al., 2015). A good 
and informative review of the applications of IR drying 
systems is provided by P a w a r ,  P r a t a p e  (2017).

One of the challenges in the IR-drying of agricultural 
grains is that the bulks of grains do not dry uniformly 
as the IR source transfers the energy directly to the 
product surface, and the closer layers to the surface 

are dried more, compared to the layers deep inside the 
paddy bed. The vibration of the drying chamber can 
agitate the product, resulting in more homogenous 
dehydration and improved quality of the dried product. 
A laboratory-scale vibration aided infrared dryer was 
developed by D a s  et al. (2004)  to investigate the 
drying characteristics of paddy. They reported that the 
Page model adequately fitted the experimental drying 
data. In a similar study, by conducting experimental 
tests in a combined IR-vibration dryer, it was con-
cluded that the radiation intensity and the depth of 
the drying bed were crucial parameters of the drying 
rate of paddy (D a s  et al., 2009). In another study, 
hot-air infrared drying of corn in a vibratory bed was 
investigated. The researchers perused characteristics 
of thin layer drying of the product experimentally, 
and finally appropriate mathematical drying model 
was presented based on IR- intensity and temperature 
(R a h m a n i a n - K o u s h k a k i  et al., 2017).

Nowadays, artificial intelligence (AI) methods 
such as artificial neural networks (ANN) and adaptive 
neuro-fuzzy inference systems (ANFIS) are widely 
used in many agricultural products, like predicting 
drying characteristics during the dehydration process. 

ANN is a massive parallel-distributed informa-
tion processing system developed as a generalized  
mathematical model of human brain activities. The 
requirements of this approach are only expressions 
and inputs-output relationships about the nature of 
the phenomenon, and items such as assumptions and 
predefined mathematical relationships are not required. 
ANN is a suitable method for modelling complex and 
non-linear industrial processes.

ANFIS is a synergic hybrid combination of ANN, 
and a fuzzy inference system (FIS) used to solve 
complex and high non-linearity problems. It is based 
on the input-output data pairs of the system under 
consideration (B u r a g o h a i n ,  M a h a n t a , 2008).

Empirical correlations are usually accurate enough 
for each specific experiment, but these equations are 
not valid for other conditions. In other words, the 
development of generalized experimental equations is 
difficult and complex. In these situations, AI methods 
are good tools for dynamic modelling. In recent years, 
extensive agricultural research has been carried out 
on food processing modelling using ANN and ANFIS 
methods. ANN is the most widely used method for 
predicting the drying characteristics of commodities 
(C h o k p h o e m p h u n ,  C h o k p h o e m p h u n , 2018). 

G o l p o u r  et al. (2018) used the ANN model for 
predicting the moisture content of paddy dried in a 
fluidized-bed dryer, and an optimal model was ob-
tained. They claimed that the ANN model was a proper 
method for predicting the moisture content of paddy.

ANN’s approach with different architects was 
used by M a h j o o r i a n  et al. (2017) to estimate the 
moisture ratio of kiwi slices. They reported that the 
ANN with a sigmoid logarithm activation function 
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containing 13 neurons in the first and second hidden 
layers was able to successfully predict the moisture 
ratio with good accuracy.

In another study conducted by K a v e h  et al. (2018), 
the drying characteristics of three agricultural products 
(potato, garlic and cantaloupe) during the convective 
hot air drying were investigated using ANN and ANFIS 
methods. The results revealed that the ANFIS method 
is more capable than the ANN model in evaluating 
outputs.

The applications of some AI methods for many as-
pects of agricultural products have been investigated by 
B a l i ,  S i n g l a  (2022). It was demonstrated that the 
ANFIS model performs appropriately in various agri-
food systems (B a k h s h i p o u r ,  Z a r e i f o r o u s h , 
2020), and this technique can be applied to research 
related to postharvest technology with satisfactory re-
sults. B a k h s h i p o u r  et al. (2021) employed ANFIS 
methods for predicting stevia leaves’ drying time and 
moisture ratio by hot air-infrared drying technique. 
They concluded that the ANFIS approach could give a 
good estimation of the drying kinetics of the product 
in an infrared-assisted hot-air dryer.

However, to the best of our knowledge, little in-
formation is available for combined infrared-assisted 
vibratory-bed drying of paddy (D a s  et al., 2004; 
D a s  et al., 2009). Furthermore, no report related to 
the capability of intelligent modelling is available 
for predicting paddy drying kinetics in these types of 
dryers. As a novelty, the present study tries to fulfil 
this shortage. The first aim was to investigate the use 
of mathematical models for describing paddy drying 
kinetics in a hybrid drying system of hot air, IR and 
vibratory in different experimental conditions. Also, 
the ability of ANNs and ANFIS methods to depict 
the drying behavior of paddy in the above-mentioned 
hybrid dryer was investigated.

MATERIAL AND METHODS

Raw material preparation

To perform drying experiments,  freshly harvested 
paddy of the Fajr cultivar was selected and procured 
from a local farm near Rasht City, Iran. The samples 
were completely cleaned of foreign materials and im-
mature grains, then sealed in polyethylene bags and 
stored in a refrigerator at C54 − . Approximately one 
hour before each test, samples were put out to adapt 
to the ambient temperature (M e h r a n  et al., 2019).

The standard hot oven method was used to measure 
the kernels’ average initial moisture content. On this 
basis, three paddy samples were taken in aluminum 
boxes and kept in a hot-air oven at C103  for 24 hours 
(S t a n d a r d s , 2016). The initial moisture content 

of the paddy was determined as 0.24 (kg matter/kg 
wet matter).

Experimental test-rig

A schematic of this drying system is presented 
in Fig 1. The dimension of the main chamber was 
70×70×75 cm. The dryer mainly consisted of three 
units of convective hot air, IR and vibration, which 
could work separately and in different combinations. 

Hot air heating unit

By using an inverter (LS, SV040iG5-4, Korea) 
controlled centrifugal blower, the produced heat of 
the electrically heated element (two elements with a 
nominal power of 1 kW) was conveyed to the drying 
chamber through a deformable tube having a diameter 
of 20 cm. 

To perform a uniform airflow, a perforated tray 
with dimensions of 50×50 cm was used on which the 
paddy samples were placed. A conical inlet (with an 
angle of about 100º) was used to distribute the inlet air 
below the drying bed. The air velocity for all tests was 
measured by TESTO 425 hotwire. The air velocity was 
0.15 m/s (S t a n d a r d , 2003). The tray was divided 
into four parts. A basket containing paddy kernels in a 
thin layer form was placed in each part, and to control 
and keep the inlet drying air temperature constant, a 
thermostat was used in this unit.

Infrared heating unit

The infrared radiation sources were placed on the 
upper side of the dryer. This dryer consisted of four 
infrared lamps (Noor lamp co, Iran) with a nominal 
power of 250 W. The vertical distance of the lamps 
to the paddy surface was adjusted to about 20 cm.

The output radiation intensity was varied by regulat-
ing the electrical power input to the lamps. A rotational 

Fig. 1. A Schematic of the experimental test-rig drying system; 1. Cen-
trifugal blower; 2. Heater; 3. Electromotor; 4. IR lamps; 5. Perforated 
tray; 6. Outlet gate
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potentiometer and a digital multimeter (TES Model 
232, Taiwan) were used to set the input electric power 
of the lamps to zero, 50 W, 100 W and 150 W. 

Vibration unit

The vibration unit mainly comprised an electromotor 
(550 W, DC), a crankshaft, and a connecting rod. The 
motor is equipped with a collar having an eccentricity 
of 20 mm to convert the rotation of the electromotor 
shaft to reciprocating motion to vibrate the drying bed 
horizontally. The frequency of the electric motor was 
adjusted using an inverter (LS, SV040iG5-4, Korea) 
to obtain the reciprocating motion of the sample tray. 
According to the literature and different trials and 
errors, the appropriate frequency of vibration motion 
was set to 20 Hz.

Experimental procedure

The experiments were conducted in the Renewable 
Energy Research Center  of  the Department  of 
Biosystems Engineering, University of Guilan, 
Rasht, Iran. Before each test, the dryer was run 
without a sample for about 15 min to set the desired 
steady-state condition. The influences of radiation 
intensity (0, 50, 100, and 150 W) and air tempera-
ture (40, 50 and 60ºC) in two modes of fixed and 
vibration bed dryers on the moisture ratio of paddy 
were investigated. The experiments were carried 
out until the ultimate moisture content of the pad-
dy was reduced to 0.14 (kg water/kg wet matter). 
During the tests, the thickness of the paddy layer 
was about (3 mm). An electronics scale (GX-1000, 
A&D Co., Japan) with an accuracy of 0.001 g was 
used to measure moisture content variation during 
drying. It should be noted that the tests were done 
in three replications.

Drying kinetics

Table 1 consists of five mathematical equations 
which representing the moisture ratio (MR) as a function 
of time. The models have been used to fit empirical 
correlations for the experimental data. 

The moisture ratio can be calculated using Eq.1.

						      (1)

The value of equilibrium moisture content is usu-
ally small relative to  and  (D o y m a z ,  P a l a , 2002). 
Thus, Eq.1 may be simplified to Eq.2, which is com-
monly used for MR calculation in grain drying studies 
(R a h m a n i a n - K o u s h k a k i  et al., 2017; M e h r a n 
et al., 2019)

						      (2)

The non-linear regression procedure was used 
to obtain constants of mathematical models. For all 
runs, the curve fitting toolbox of MATLAB software 
was performed. Three statistical criteria, including 
coefficient of determination (R2), chi-square (χ2 ) 
and  root mean squared error (RMSE), were used to 
select the best model in each experimental condition 
(Eq.3 to Eq.5):

						      (3)

						      (4)

						      (5)

where xexp,i and  xpred,i are the ith experimental and 
predicted MR data from N total MR values, respectively.
         is the average of experimental MR values and 
n is the number of constants in drying models. The 
model with the highest value of R2 and the least values 
of χ2 and RMSE is the suited model for describing the 
drying kinetics of paddy.

Artificial neural networks (ANN)

Different topologies of multilayer feed-forward 
back-propagation neural networks with one or two 
hidden layers and different numbers of neurons in each 
hidden layer (1 neuron to 20 neurons) were evaluated 
for predicting the MR of paddy during drying under 
IR-assisted fixed-bed and vibratory-bed conditions. Two 
types of transfer functions, including Tangent-sigmoid 
and logarithm-sigmoid (ʻtansig’ and ʻlogsig’ codes in 
MATLAB, respectively), were applied in the hidden 
layers of the ANNs. The transfer function of the output 

𝑀𝑀𝑀𝑀 = 𝑀𝑀 −𝑀𝑀𝑜𝑜
𝑀𝑀𝑜𝑜 −𝑀𝑀𝑒𝑒

 

𝑀𝑀𝑀𝑀 = 𝑀𝑀
𝑀𝑀𝑜𝑜

 

Table 1. Evaluated mathematical models used for kinetic drying

Model no. Model Name Model Equaition Reference

1 Wang and Singh MR = a t2 + b t + c Wang and Singh (1978)

2 Henderson and Pabis MR = a exp(– k t) Henderson and Pabis (1961)

3 Logarithmic MR = a exp( – k t) + c Henderson (1974)

4 Page MR = a exp( – k tn) Diamante and Munro (1993)

5 Newton MR = exp (– k t) O’Callaghan et al. (1971)
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layer was set to be pure-line. Values of drying time, 
inlet air temperature, and infrared radiation intensity 
were fed into the networks as input data, and the MR 
values were the target data.  In a random mode, 60% 
and 20% of data were used as the training dataset and 
for cross-validation, respectively. The remaining 20% 
were used as model test datasets.

In the present study, Levenberg-Marquardt (LM) 
and Scaled Conjugate Gradient (SCG) training tech-
niques (ʻtrainlm’ and ʻtrainscg’ codes in MATLAB, 
respectively), which are the most common training 
methods in agricultural studies (P a n d e y  et al., 2010; 
K a m b l e  et al., 2015; T a h e r i - G a r a v a n d  et al., 
2018), were applied as the ANN training function. A 
schematic architecture of the developed ANNs with 
two hidden layers is presented in Fig. 2a.  

Adaptive network-based fuzzy inference system (ANFIS)

The capability of Sugeno ANFIS models was also 
investigated in this study to predict paddy MR based 
on three variables drying time, inlet drying air tem-
perature, and infrared radiation intensity. A schematic 
representation of ANFIS architecture is shown in  
Fig. 2b. The data were split randomly into 60%, 20%, 
and 20% percent sets employed for the training, vali-
dation, and testing phases.

Different structures of neuro-fuzzy modelling sys-
tems were developed and evaluated. Type of input and 
output Membership Functions (MFs), Number of MFs, 
and the Optimization Method (OM) were the parameters 
that were adjusted and evaluated to obtain the desired 
performance. The membership function is a curve that 
defines how each point in the input space is mapped 
to a membership value between 0 and 1, called the 
degree of membership (A d n a n  et al., 2015). Three 
different input MFs, namely Gaussian, Sigmoidal, 
and Triangular MFs, were studied. Descriptions of 
these MFs are presented in the literature (Y ι l m a z , 
A r s l a n , 2008; P a l u s z e k ,  T h o m a s , 2019). 
The two output MFs applied in this study were linear 
and constant MFs, which have been used in previous 
agricultural-related fuzzy-system development research 
(A h m a d a a l i  et al., 2013; A m i r i ,  S h a b a n i , 
2017; S h a f a e i  et al., 2019). 

The OMs adjust membership function parameters 
to follow the training data (K a u ,  A g g r a r w a l , 
2013). In this study, two OMs were investigated: Back-
Propagation (BP), in which the error rates propagate 
backward and the premise parameters are updated by 
the gradient descent method, (T a s h t o u s h  et al., 
2011), and the hybrid OM, which uses a combination 
of least squares and back-propagation methods to 
optimize the prediction (K h a r b  et al., 2014). The 

Table 2. Different parameters and relevant values that used for constructing ANFIS models

Number of MFs Optimization Method Input MF Output MF

2-2-2 Backpropagation Gaussian Constant
3-3-3 Sigmoid

Hybrid Linear4-4-4 Triangular

 

Fig. 2. The overall form of ANN (a) 
and ANFIS (b) model for prediction 
of MR during IR-assisted paddy dry-
ing (from MATLAB software)
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number of MFs was selected to be 2-2-2, 3-3-3, and 
4-4-4. Table 2 lists a summary of the studied ANFIS 
parameters, which generate thirty-three combinations 
(3 Number of MFs × 2 OMs × 3 Input MFs × 2 Output 
MFs = 36 structures) in this study.

The developed ANN and ANFIS models were evalu-
ated based on three statistical parameters, namely, R2, 
RMSE and Mean Absolute Error (MAE). These criteria 
were calculated using equations 3, 4 and 6 (T a o  et 
al., 2016; B a k h s h i p o u r  et al., 2018):

						      (6)

where xexp,i and  xpred,i are the ith experimental and 
predicted MR data from N total MR values, respectively. 
The models with the highest R2, the least RMSE, and 
MAE were selected as the most precise MR predictors.

RESULTS AND DISCUSSION

Drying kinetics

The effect of drying conditions on the drying over-
all time is presented graphically in Fig. 3. It can be 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁∑|𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖 − 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖|

𝑁𝑁

𝑖𝑖=1
 

Fig. 3. Averages of overall drying 
time of paddy in different drying 
condition

Table 3. Values of coefficients of selected models and statistical criteria at different temperatures and radiation intensities during drying in IR- 
fixed mode

T
(ͦͦ C)

IR power
(W)

Best Model
Model criteria Model parameters*

R2 χ2 RMSE a b c K n

40

0 Page 0.9951 0.0035 0.0084 -- -- -- 0.0259 0.6019

100 Logarithmic 0.9990 0.0005 0.0045 0.5083 -- 0.4874 0.0199 --

150 Page 0.9995 0.0003 0.0030 -- -- -- 0.0333 0.6957

200 Wang and Singh 0.9963 0.0017 0.0090 0.0002 -0.0198 0.9959 -- --

50

0 Page 0.9977 0.0012 0.0061 -- -- -- 0.0264 0.6575

100 Logarithmic 0.9953 0.0023 0.0105 0.5364 -- 0.4605 0.0253 --

150 Page 0.9952 0.0021 0.0097 -- -- -- 0.0365 0.7663

200 Page 0.9985 0.0006 0.0058 -- -- -- 0.0335 0.844

60

0 Page 0.9985 0.0007 0.0054 -- -- -- 0.0294 0.6817

100 Page 0.9991 0.0004 0.0042 -- -- -- 0.0423 0.7328

150 Page 0.9969 0.0011 0.0084 -- -- -- 0.0486 0.7620

200 Page 0.9995 0.0002 0.0034 -- -- -- 0.0348 0.9456

* The a, b, c, k, and n values are the constant values of the best fitted mathematical models, according to Table 1.
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observed that for each couple of inlet air temperature 
and IR power, the overall drying time decreases when 
vibration is applied to the drying bed. This means that 
the dryer’s working capacity can improve by using the 
vibratory-bed mode. Increasing the inlet air tempera-
ture and IR power can also increase the drying rate 
and decrease overall drying time.

Different mathematical models were used to fit 
the drying trend of paddy at different conditions. The 
calculated constants of each mathematical model and 
values of statistical criteria are presented in Tables 
3 and 4 for fixed and vibratory modes, respectively. 
The tables also show that almost all the five selected 
models provide a good description of the experimental 
drying data of paddy. A comparison of the selected 

models shows that the Page model was the most precise 
mathematical model, which satisfactorily described the 
drying behaviour of the paddy grains in most drying 
conditions. For 16 of the 24 different drying conditions 
(12 cases for fixed-bed and 12 cases for vibratory-
bed mode), the Page model was the most appropriate 
predictor (R2 range from 0.9951 to 0.9998).

Obviously, there is no general empirical model 
for a range of drying parameters, and in addition, 
using empirical models to correlate drying kinetics 
is very time-consuming. Since mathematical drying 
correlations are limited to one specific experiment, 
different mathematical models are fitted to different 
conditions. In contrast, a unique ANN or ANFIS model 
gives better results for each experiment. 

Table 4. Values of coefficients of selected models and statistical criteria at different temperatures and radiation intensities during drying in IR- 
vibratory mode

T
(ͦͦ C)

IR power
(W)

Best Model
Model criteria Model parameters*

R2 χ2 RMSE a b c k n

40

0 Logarithmic 0.9976 0.0021 0.0066 0.4314 -- 0.5543 0.0216 --

100 Page 0.9957 0.0021 0.0086 -- -- -- 0.0344 0.6789

150 Logarithmic 0.9992 0.0004 0.0038 0.4851 -- 0.5122 0.0392 --

200 Page 0.9998 0.0001 0.0022 -- -- -- 0.0280 0.8911

50

0 Page 0.9986 0.0009 0.0050 -- -- -- 0.0283 0.6727

100 Page 0.9986 0.0009 0.0050 -- -- -- 0.0283 0.6727

150 Page 0.9997 0.0001 0.0023 -- -- -- 0.0408 0.7629

200 Page 0.9983 0.0006 0.0060 -- -- -- 0.0416 0.7907

60

0 Logarithmic 0.9974 0.0013 0.0069 0.4899 -- 0.5046 0.0294 --

100 Page 0.9962 0.0015 0.0088 -- -- -- 0.0477 0.7164

150 Wang and Singh 0.9995 0.0002 0.0036 0.0008 -0.0368 0.9990 -- --

200 Wang and Singh 0.9977 0.0008 0.0087 0.0007 -0.0379 0.9998 -- --

* The a, b, c, k, and n values are the constant values of the best fitted mathematical models, according to Table 1.

Table 5. Performance criteria of the most accurate ANN structures for MR prediction in IR-assisted fixed-bed paddy drying

Training function
Transfer functions in hidden layer

Topology R2 (%) RMSE MAE
Layer 1 Layer 2

trainlm

Tansig - 3-16-1 99.84 0.0053 0.0041

Logsig - 3-17-1 99.86 0.0049 0.0035

Tansig Tansig 3-20-11-1 99.90 0.0043 0.0027

Tansig Logsig 3-14-15-1 99.92 0.0041 0.0024

Logsig Logsig 3-16-13-1 99.92 0.0040 0.0024

Logsig Tansig 3-18-16-1 99.92 0.0037 0.0023

trainscg

Tansig - 3-16-1 99.56 0.0089 0.0070

Logsig - 3-14-1 99.18 0.0120 0.0090

Tansig Tansig 3-13-19-1 99.80 0.0061 0.0044

Tansig Logsig 3-16-8-1 99.76 0.066 0.0049

Logsig Logsig 3-15-4-1 98.90 0.0137 0.0116

Logsig Tansig 3-11-10-1 99.64 0.0080 0.0060
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Table 6. Performance criteria of the most accurate ANN structures for MR prediction in IR-assisted vibratory-bed paddy drying

Training function
Transfer functions in hidden layer

Topology R2 (%) RMSE MAE
Layer 1 Layer 2

trainlm

Tansig - 3-19-1 99.89 0.0047 0.0033

logsig - 3-16-1 99.91 0.0042 0.0031

Tansig Tansig 3-19-14-1 99.94 0.0031 0.0022

Tansig logsig 3-18-16-1 99.94 0.0032 0.0023

logsig logsig 3-17-16-1 99.94 0.0031 0.0023

logsig tansig 3-20-16-1 99.94 0.0030 0.0021

trainscg

Tansig - 3-14-1 99.56 0.0092 0.0073

logsig - 3-11-1 99.22 0.0116 0.0084

Tansig tansig 3-14-14-1 99.78 0.0062 0.0046

Tansig logsig 3-19-10-1 99.82 0.0056 0.0045

logsig logsig 3-18-5-1 99.62 0.0083 0.0062

logsig tansig 3-20-9-1 99.76 0.0063 0.0051

ANNs results

The most accurate MR predictor ANNs in each 
combination of transfer functions in hidden layers 
were selected based on the training performance 
criteria and are shown in Tables 5 and 6 for fixed 
and vibratory-bed drying conditions, respectively. 
Regarding performance criteria, the most precise ANN 
had the topology of 3-18-16-1, LM training function, 
logarithm sigmoid transfer function in the first layer, 
and tangent sigmoid transfer function in the second 
hidden layer. This structure’s R2, RMSE, and MAE 
values were 99.92%, 0.0037, and 0.0026, respectively, 
for the training dataset. While similar R2 values were 
obtained by two other ANN structures and the most 
successful ANN was selected based on the lowest value 

of RMSE and MAE. The selected structure was able 
to predict MR values in the dataset with criteria of 
99.58%, 0.0119 and 0.0101 for R2, RMSE and MAE, 
respectively.

In the case of vibratory bed drying condition, among 
several ANNs having the highest R2 (99.94%), the 
most reliable one, which was selected based on the 
lowest values of RSME (0.0030) and MAE (0.0021) 
values, had 3-20-16-1 topology, LM training function, 
logarithm sigmoid transfer function in the first layer, 
and tangent sigmoid transfer function in the second 
hidden layer. This model’s R2, RSME, and MAE criteria 
in the test dataset were 99.71%, 0.0076, and 0.0077, 
respectively. ANN resulted in more accurate predic-
tions for vibratory-bed drying than fixed-bed drying.

 

 
Fig. 4. Variations of LM-LOG-TAN ANN’s R2 by changing the number of neurons in hidden layers; a) fixed-bed drying, b) vibratory-bed drying
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Overall, the LM training function, logarithm sig-
moid transfer function in the first layer, and tangent 
sigmoid transfer function in the second layer (LM-
LOG-TAN) have resulted in the most accurate MR 
predictor ANNs model. Fig. 4a and Fig. 4b graphically 
represent the variations of training R2 values of this 
structure by changing the number of neurons in the 
first and second hidden layers. It should be noted that, 
the R2 values of less than 95.00% were truncated to 
better show the R2 variations on the plot top surfaces. 
It can be seen in Fig 4 that most of the topologies LM-
LOG-TAN have resulted in very high R2 values. It is 

also obvious that the lower R2 values were obtained 
when the number of neurons was less than 5 in the first 
hidden layer. In Fig. 5, the plot of experimental MR 
values vs. ANN estimated ones (test data) is shown 
for fixed and vibratory bed drying. The concentration 
of the data points near the unity slope line illustrates 
the promising ability of ANN models to predict MR.

ANFIS results

Table 7 shows the R2, RMSE, and MAE values 
of the most precise ANFIS architectures for MR pre-

Fig. 5. Scatter plot of experimental vs. predicted MR values of ANN models for IR-assisted fixed-bed paddy drying (a) and vibratory-bed paddy 
drying (b)

Table 7. Performance criteria of the most accurate ANFIS structures for MR prediction in IR-assisted fixed-bed paddy drying

Number of MFs Optimization Method Input MF Output MF R2 (%) RMSE MAE

2-2-2 Backpropagation Triangular Constant 92.90 0.0354 0.0396

2-2-2 Hybrid Gaussian Linear 99.38 0.0105 0.0117

2-2-2 Hybrid Sigmoid Linear 96.92 0.0233 0.02404

2-2-2 Hybrid Triangular Constant 92.90 0.0354 0.0391

2-2-2 Hybrid Triangular Linear 99.52 0.0092 0.0099

3-3-3 Backpropagation Triangular Constant 95.62 0.0278 0.0316

3-3-3 Hybrid Sigmoid Linear 99.40 0.0103 0.01065

3-3-3 Hybrid Triangular Constant 96.01 0.0265 0.0298

3-3-3 Hybrid Triangular Linear 99.78 0.0062 0.0060

4-4-4 Hybrid Gaussian Linear 99.81 0.0058 0.0052

4-4-4 Hybrid Sigmoid Constant 99.30 0.0111 0.0118

4-4-4 Hybrid Triangular Constant 92.43 0.0397 0.0362

4-4-4 Hybrid Triangular Linear 99.80 0.0060 0.0058
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Table 8. Performance criteria of the most accurate ANFIS structures for MR prediction in IR-assisted vibratory-bed paddy drying

Number of MFs Optimization Method Input MF Output MF R2 (%) RMSE MAE

2-2-2 Backpropagation Triangular Constant 92.66 0.0363 0.0400

2-2-2 Hybrid Gaussian Linear 99.46 0.0098 0.0104

2-2-2 Hybrid Sigmoid Linear 96.77 0.0241 0.0251

2-2-2 Hybrid Triangular Constant 92.63 0.0363 0.0408

2-2-2 Hybrid Triangular Linear 99.80 0.0059 0.0061

3-3-3 Backpropagation Triangular Constant 95.18 0.0294 0.0318

3-3-3 Hybrid Sigmoid Linear 99.47 0.0098 0.0095

3-3-3 Hybrid Triangular Constant 95.54 0.0282 0.0301

3-3-3 Hybrid Triangular Linear 99.89 0.0044 0.0042

4-4-4 Hybrid Gaussian Constant 94.69 0.0308 0.0294

4-4-4 Hybrid Gaussian Linear 99.89 0.0045 0.0045

4-4-4 Hybrid Sigmoid Constant 97.47 0.0213 0.0282

4-4-4 Hybrid Sigmoid Linear 99.75 0.0067 0.0067

4-4-4 Hybrid Triangular Constant 97.36 0.0217 0.0226

4-4-4 Hybrid Triangular Linear 99.81 0.0059 0.0060

Fig. 6. The obtained HGL4-ANFIS surface plots for MR prediction of paddy during IR-assisted fixed-bed drying;  
(a) MR vs. radiation and temperature, (b) MR vs. radiation and time, and (c) MR vs. time and temperature
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diction in fixed-bed drying of paddy. The presented 
performance criteria in this table are obtained by 
evaluating the most accurate ANFIS models on the 
training dataset. The ANFIS model with the Hybrid 
optimization method, Gaussian input MF, Linear output 
MF, and 4-4-4 number of MFs (HGL4) was the most 
accurate model with R2 of 99.81%. The RMSE and 
MAE values of this ANFIS structure were 0.0058 and 
0.0052, respectively. This model’s R2, RMSE, and 
MAE values were 99.35%, 0.0114, and 0.0105, while 
the model was evaluated using test data.

Also, going through Table 7, it is evident that, 
generally, ANFIS models with the hybrid optimization 
method were more successful than those with the back-
propagation optimization method. The surface view 
of the obtained HGL4 fuzzy rules is shown in Fig. 6. 
This figure provides a 3-D view of the fuzzy model 
output (predicted MR) versus different combinations 
of the input variables. These surfaces are also good 
graphical presenters of the paddy drying behavior. 
For example, we can see in Figure 6c that the drying 
rate increases by increasing the inlet drying air from 
40ºC to 60°C. In Fig 6, it can be perceived that by 
increasing the radiation and temperature, the slope of 
the MR reduction trend becomes steeper. 

The most accurate model (HGL4) had 4-4-4 num-
bers of MFs. This means that there were 64 rules 
which ANFIS established to construct this precise 
MR prediction model. Such a number of rules seems 
almost impossible to develop by the expert. It shows 
the advantage of network-based fuzzy systems over 
conventional ones for decision-making on drying 
kinetics-related datasets. On the other hand, a large 
number of membership functions make it very difficult 
to interpret and apply the created rules for further works. 
From this point of view, the HTL2 (Hybrid-Triangular-
Linear structure with 2-2-2 Number of MFs), which 
resulted in only 0.29% of R2 lower than the HGL4 
structure, by using only eight rules, is much simpler 
and more appropriate. The performance measures of 
HTL2 for the training dataset were 99.52%, 0.0092, 
and 0.0099 for R2, RMSE, and MAE, respectively. 
This model’s R2, RMSE, and MAE were 99.22%, 
0.0128, and 0.0129, respectively.

The second, third, and fourth ranks of the most 
accurate ANFIS models belonged to those with hybrid 
optimization methods, triangular input MF and linear 
output MF, which shows the capability of this structure 
for prediction of MR in IR-assisted fixed-bed paddy 
drying. The R2 values of this structure on the train-
ing dataset were 99.80%, 99.78%, and 99.52% when 
using 4-4-4, 3-3-3, and 2-2-2 membership functions, 
respectively.

Fig. 7 shows the scatter plot of measured MR 
values vs. those predicted by the HGL4 model (test 
dataset) for IR-assisted fixed-bed paddy drying. The 
concentration of the data points near the one-to-one 

line represents the perfect fit of the model-predicted 
data to the experimental ones.

Results of the most reliable ANFIS structures for 
predicting the MR during IR-assisted vibratory-bed 
drying of paddy are given in Table 8. In this case, 
the best performance criteria were obtained when a 
Triangular input MF, Linear output MF, Hybrid opti-
mization method, and 3-3-3 number of MFs (HTL3) 
structure were used for MR prediction. The train-
ing performance criteria of the HTL4 structure were 
99.89%, 0.0044, and 0.0042 for R2, RMSE and MAE, 
respectively. The R2, RMSE and MAE were 99.62%, 
0.0086 and 0.0082, respectively, when the model was 
evaluated on the test dataset. 

Also, as can be seen by examining Table 8, the 
structure of the HGL4 structure (Hybrid optimization 
method, Gaussian input MF, Linear output MF, and 
4-4-4 membership functions) resulted in a similar R2 
with the HTL3 structure. Still, the HTL3 structure 
was selected for its lower values of RMSE (0.0045) 
and MAE (0.0045) rather than HGL4.

It should be noted that the best performance ob-
tained by using the back-propagation optimization 
method belonged to the model with triangular input MF, 
Constant output MF and 3-3-3 membership functions 
(R2 = 92.47%, RMSE = 0.0380 and MAE = 0.0374 
on train dataset). Comparing these values with those 
achieved by the HTL3 structure shows that the hybrid 
optimization method is much more reliable than the 
back-propagation method for MR prediction during 
paddy drying.

As already observed in the case of the fixed-bed 
condition, all of the Hybrid-Triangular-Linear struc-
tures with different numbers of MF resulted in high 
prediction accuracies, which shows the significant 

Fig. 7. Scatter plot of experimental vs. predicted MR values of HGL4 
ANFIS model for IR-assisted fixed-bed paddy drying
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reliability of this structure for monitoring the drying 
behavior of paddy.

The efficient applicability of ANFIS was reported 
by O j e d i r a n  et al. (2020) for predicting the MR 
of yam slices during drying in a convective hot air 
dryer with the R2 and RMSE values of  0.98226 and 
0.01702, respectively. The R2 and RMSE values were 
reported to be 0.9998 and 0.0003, respectively, when 
the ANFIS system was used to fit the experimental MR 
data of almond kernels in a thin layer convection dryer 
with ultrasound pretreatment (K a v e h  et al., 2018).

The membership surfaces of the HTL3 ANFIS 
model are demonstrated in Fig. 8. The general shape 
of this surface was almost similar to those presented in  
Fig. 6 for HGL4 ANFIS. However, the decreasing trends 
of surfaces in Fig. 8 are higher than those in Fig. 6. This 
shows that the vibratory-bed condition increased the 
drying rate of paddy compared with fixed-bed drying.

The scatter plot of experimental vs. HTL3-predicted 
MR values (test dataset) for IR-assisted vibratory-bed 
paddy drying is illustrated in Fig. 9. The points in this 
figure are closer to the one-to-one line than those in 
Fig. 7, which shows the higher prediction reliability 

of the fuzzy model for vibratory-bed data rather than 
fixed-bed data.

According to the results reported above, both ANN 
and ANFIS are robust and reliable methods for predict-
ing the MR of paddy during the IR-assisted vibration 
drying process. The critical values of both models were 
found to be very high and very close to each other. 
However, the ANN predictors produced almost better 
results than the ANFIS ones, as the predicted MR values 
by the ANN were closer to the experimental data than 
the ANFIS models. Both models have been reported 
in the literature to work reliably for predicting the 
drying behavior of agricultural products in different 
drying methods (A h m a d a a l i  et al., 2013; K a v e h , 
A m i r i - C h a y j a n , 2015; A l - M a h a s n e h  et al., 
2016; Yo u s e f i , 2017; A b b a s p o u r ‐ G i l a n d e h 
et al., 2020).

CONCLUSION

IR-hot air Hybrid drying of paddy kernels was 
conducted in an experimentally vibratory-bed dryer. 

Fig. 8. The obtained HTL3-ANFIS surface plots for MR prediction of paddy during IR-assisted vibratory-bed drying;  
(a) MR vs. radiation and temperature, (b) MR vs. radiation and time, and (c) MR vs. time and temperature
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The effects of hot air temperature and radiation in-
tensity on the paddy moisture ratio were investigated 
in fix-bed and vibratory-bed modes. It was observed 
that by using the vibratory-bed mode and increasing 
the inlet drying temperature and the IR lamp power, 
the drying time was reduced. 

Different mathematical models were used to fit 
empirical correlations for the experimental data of 
paddy thin layer drying. The Page model was the 
most accurate mathematical MR predictor in most 
of the studied drying conditions, with an R2 of more 
than 0.995. 

Two well-known AI methods (ANN and ANFIS) 
have been applied to predict the moisture ratio of 
the paddy. The results showed that both the ANN 
and ANFIS models were suitable for predicting the 
moisture ratio of grains, showing the advantage of 
neurocomputing methods for monitoring of paddy 
dryers. According to the statistical criteria, the ANN 
model was more accurate and efficient when compared 
with ANFIS. The best ANN models for predicting the 
MR had the topology of 3-18-16-1 and 3-20-16-1 for 
fixed and vibratory modes, respectively. In addition, 
using the LM training function, logarithm sigmoid 
transfer function in the first hidden layer, and tangent 
sigmoid transfer function in the second hidden layer 
have resulted in the most accurate MR predictor ANNs 
for both mentioned drying bed modes. Results showed 
that the optimized network for fix mode presented 
R2 of 99.92%, RMSE of 0.0037 and MAE of 0.0026. 
These values were R2=99.94%, RMSE=0.0030 and 
MAE=0.0021 for vibratory mode.

It can be concluded that the application of intel-
ligent models, especially ANN, can be considered as 
an effective alternative method for monitoring paddy 
drying in IR-hot air hybrid dryers. 
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